K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Đáp án A

Vectơ pháp tuyến của đường thẳng d là v → (1; –3). Ta có u → = k v →  ( k ≠ 0  do d ≠ d '  )

⇔ u → ( k ; − 3 k ) . Áp dụng biểu thức tọa độ, ta có: x ' = k + x y ' = − 3 k + y  ( trong đó x’; y’ thỏa mãn phương trình đường thẳng (d’))

=> k + x – 3( –3k + y) – 10  = 0 =>  x − 3 y + 10 k – 10   =   0 x − 3 y = 0 =>  k = 1

9 tháng 5 2019

Lấy một điểm thuộc d, chẳng hạn M = (0; 1).

Đường thẳng d 2  qua M vuông góc với có vectơ chỉ phương là  v   → =   ( 2 ;   − 3 ) .

Do đó phương trình của d 2  là Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Gọi M' là giao của d 1  với d 2  thì tọa độ của nó phải thỏa mãn hệ phương trình:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{5}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)

Giao điểm của d và (C) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm

b, Gọi H là trung điểm AB.

Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)

Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)

\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)

Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)

\(\Rightarrow\widehat{HBI}=30^o\)

Khi đó: 

\(IH=d\left(I;\Delta\right)\)

\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)

\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)

\(\Leftrightarrow m=5\pm5\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{545}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)

Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)

\(\Leftrightarrow...\)

17 tháng 12 2021

1.

\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)

Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)

\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)

2.

Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)

18 tháng 12 2021

mình cảm ơn bạn nhiều nha 

17 tháng 1 2019

Đáp án B

Độ dài véc tơ v →  bé nhất đúng bằng khoảng cách h giữa d và d' . h chính là khoảng cách từ M ∈ d  tới N ∈ d ' sao cho M N → ⊥ u → 4 ; − 3 trong đó u → là VTCP của cả d và d' .Và khi đó:  v → = M N →

Chọn M − 3 ; 2 ∈ d . Ta cần tìm N t ; − 6 − 3 t 4 ∈ d ' sao cho:

M N → t + 3 ; − 14 − 3 t 4 ⊥ u → 4 ; − 3

⇔ 4 t + 12 + 42 + 9 t 4 = 0 ⇔ t = − 18 5

⇒ M N → = − 3 5 ; − 4 5

12 tháng 5 2019

Đáp án B

2 tháng 7 2019

-2y+x+3=0.

Đáp án B

16 tháng 2 2017

Chọn D

Đường thẳng (d) có VTPT là (2;3) và VTCP là (3; -2)

Do đường thẳng (d) và ∆ vuông góc với nhau nên đường thẳng ∆ nhận VTCP của đường thẳng (d) làm VTPT.

Do đó đường thẳng ∆ có VTPT là (3; -2) .