Tập nghiệm của bất phương trình 1 3 x + 2 > 3 − x
A. 0 ; 2 .
B. 2 ; + ∞ .
C. − 2 ; − 1 .
D. 0 ; + ∞ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Ta có: \(x-1=0\Rightarrow x=1\),\(x+3=0 \Rightarrow x = - 3\)
BXD:
Vậy \(T=(-\infty;-3]\cup[1;+\infty)\)
- Đặt \(f\left(x\right)=\left(x-1\right)\left(x+3\right)\)
- Cho \(f\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
- Lập bảng xét dấu :
x___________-3_________________1______________
x-1____-_____|________-_________0______+___________
x+3___-______0_______+_________|_____+____________
f(x)___+______0_______-__________0_____+____________
- Từ bảng xét dấu :- Để f(x) \(\ge0\)
Vậy phương trình có tập nghiệm \((-\infty;-3]\cup[1;+\infty)\)
Chọn B.
Ta có:
Tập nghiệm của hệ bất phương trình là S = [-3;3).
Ta có: x − 3 x − 2 ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là x − 3 ≥ 0 x − 2 = 0 ⇔ x ≥ 3 x = 2
Vậy tập nghiệm của bất phương trình là S = { 2 } ∪ [3;+ ∞ )
Ta có: ( x - 3 ) ( x - 2 ) ≥ 0
Điều kiện: x ≥ 2
Bất phương trình tương đương là
Vậy tập nghiệm của bất phương trình là x = 2 hoặc x ≥ 3
Đáp án C
f ( t ) = t ( t 2 + 3 + 1 ) ⇒ f ' ( t ) = t 2 + 3 + 1 + t t t 2 + 3 > 0 ∀ t ( x + 2 ) ( ( x + 2 ) 2 + 3 + 1 ) > − x ( x 2 + 3 + 1 ) ⇔ ( x + 2 ) ( ( x + 2 ) 2 + 3 + 1 ) > − x ( ( − x ) 2 + 3 + 1 ) ⇔ f ( x + 2 ) > f ( − x ) ⇔ x + 2 > − x ⇔ x > − 1
Đáp án: B
Ta có:
Vậy tập nghiệm của hệ bất phương trình là: [-1;3]