Cho tam giác ABC vuông tại A có: AB = 5, AC = 12. Trên cạnh BC lấy điểm M sao cho BM = 5 13 BC. Qua M kẻ đường thẳng vuông góc với AC tại N. Độ dài MN là:
A. 12 13
B. 45 13
C. 40 13
D. 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a: ΔACB cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ACB}=\widehat{FCN}\)(hai góc đối đỉnh)
nên \(\widehat{ABC}=\widehat{FCN}\)
Xét ΔEBM vuông tại M và ΔFCN vuông tại N có
BM=CN
\(\widehat{EBM}=\widehat{FCN}\)
Do đó: ΔEBM=ΔFCN
=>EM=FN
b: ED//AC
=>\(\widehat{EDB}=\widehat{ACB}\)(hai góc đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EDB}=\widehat{ABC}\)
=>\(\widehat{EBD}=\widehat{EDB}\)
=>ΔEBD cân tại E
ΔEBD cân tại E
mà EM là đường cao
nên M là trung điểm của BD
=>MB=MD
c: EM\(\perp\)BC
FN\(\perp\)BC
Do đó: EM//FN
Xét ΔOME vuông tại M và ΔONF vuông tại N có
ME=NF
\(\widehat{MEO}=\widehat{NFO}\)(hai góc so le trong, EM//FN)
Do đó: ΔOME=ΔONF
=>OE=OF
a)
Xét tam giác BAC vuông tại A và tam giác BMN vuông tại M có:
\(\widehat{BAC}\)=\(\widehat{BMN}\)
=> Tam giác BAC ᔕ Tam giác BMN (g-g)
=> BA/BM=BC/BN
=> BN=BM.\(\dfrac{BC}{BA}\)=18.\(\dfrac{20}{12}\)=30cm
b)
Xét tam giác PAN vuông tại A và tam giác PMC vuông tại M có
\(\widehat{APN}\)=\(\widehat{MPC}\) (đối đỉnh)
=> Tam giác PAN ᔕ Tam giác PMC (g-g)
=> \(\dfrac{PA}{PM}\)=\(\dfrac{PN}{PC}\)
=> PA.PC=PM.PN (đpcm)
a: EM=căn 10^2-6^2=8cm
b: góc BAC=180-2*40=100 độ
góc BAC>góc ABC=góc ACB
=>BC>AC=AB
c: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có
BE=CF
góc MBE=góc NCF
=>ΔMBE=ΔNCF
=>EM=FN
Tam giác ABC vuông tại A, theo định lí Pi-ta-go ta có:
B C 2 = A B 2 + A C 2 ⇒ B C 2 = 5 2 + 12 2 = 169 ⇒ B C = 13
BM = 5 13 BC = 5 13 .13 = 5 => CM = 13 - 5 = 8.
Xét ΔCMN và ΔCBA có:
N = A = 90 ∘ (gt)
Góc C chung
=> ΔCMN ~ ΔCBA (g - g) => (cạnh tương ứng)
⇒ M N = A B . C M C B = 5.8 13 = 40 13
Đáp án: C