K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

NV
24 tháng 12 2020

\(\Leftrightarrow\left(2m-1\right)sinx-\left(m+2\right)cosx+4m-3\ge0\) ;\(\forall x\)

\(\Leftrightarrow m\ge\dfrac{sinx+2cosx+3}{2sinx-cosx+4}=P\)

\(\Leftrightarrow m\ge P_{max}\)

Ta có: \(P=\dfrac{sinx+2cosx+3}{2sinx-cosx+4}\Leftrightarrow\left(2P-1\right)sinx-\left(P+2\right)cosx=3-4P\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(3-4P\right)^2\)

\(\Leftrightarrow11P^2-24P+4\le0\)

\(\Rightarrow\dfrac{2}{11}\le P\le2\)

\(\Rightarrow m\ge2\)

24 tháng 9 2023

Tham khảo:

Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - m}}{{2.2}} =  - \frac{m}{4};{y_S} = f( - \frac{m}{4})\)

Vì hàm số bậc hai có \(a = 2 > 0\) nên ta có bảng biến thiên sau:

 

Hàm số đạt giá trị nhỏ nhất bằng \(f( - \frac{m}{4}).\)

Hàm số giảm trên \(( - \infty ; - \frac{m}{4})\) và tăng trên \(( - \frac{m}{4}; + \infty )\)

Theo giả thiết, ta có:

Hàm số giảm trên khoảng \(\left( { - \infty ;1} \right)\)\( \Rightarrow \left( { - \infty ;1} \right) \subset ( - \infty ; - \frac{m}{4}) \Leftrightarrow 1 \le  - \frac{m}{4}.\)

Tương tự hàm số tăng trên khoảng \(\left( {1; + \infty } \right)\)\( \Rightarrow \left( {1; + \infty } \right) \subset ( - \frac{m}{4}; + \infty ) \Leftrightarrow  - \frac{m}{4} \le 1.\)

Do đó: \( - \frac{m}{4} = 1\) hay \(m =  - 4\)

Lại có: Tập giá trị là \([9; + \infty )\)\( \Rightarrow \)Giá trị nhỏ nhất của hàm số bằng 9.

\( \Leftrightarrow f(1) = f( - \frac{m}{4}) = 9 \Leftrightarrow {2.1^2} + ( - 4).1 + n = 9 \Leftrightarrow n = 11.\)

Vậy \(m =  - 4,n = 11.\)

NV
21 tháng 1 2021

\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)

- Với \(m=-1\) thỏa mãn

- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)

\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)

\(\Rightarrow-1< m\le0\Rightarrow m=0\)

- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)

\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)

\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)

Vậy \(m=\left\{-2;-1;0\right\}\)

NV
14 tháng 12 2020

Hàm số xác định trên R khi và chỉ khi:

a.

\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

b.

\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)

\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)

c.

\(x^2+6x+2m-3>0\) với mọi x

\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)

\(\Leftrightarrow m>6\)

e.

\(-x^2+6x+2m-3>0\) với mọi x

Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn

f.

\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)

\(\Leftrightarrow1< m< 3\)

24 tháng 7 2023

\(y'=\dfrac{x-m-x+1}{\left(x-m\right)^2}=\dfrac{1-m}{\left(x-m\right)^2}\)

Hàm số nghịch biến trên khoảng \(\left(-\infty;2\right)\Leftrightarrow y'< 0\forall x\in\left(-\infty;2\right)\Leftrightarrow\left\{{}\begin{matrix}1-m< 0\\x\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\ge2\end{matrix}\right.\Rightarrow m\ge2\)

Có 19-2+1=18 giá trị nguyên của m thỏa mãn

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

11 tháng 10 2019

Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi  \(x^2-\left(2m-1\right)x+m^2\ne0\)\(\forall x\inℝ\)

Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm

<=> \(\Delta< 0\)

<=> \(\left(2m-1\right)^2-4m^2< 0\)

<=> \(-4m+1< 0\)

<=> m > 1/4.

NV
12 tháng 1 2022

\(y'=x^2-2\left(m-1\right)x+3\left(m-1\right)\)

Hàm đồng biến trên khoảng đã cho khi với mọi \(x>1\) ta luôn có:

\(g\left(x\right)=x^2-2\left(m-1\right)x+3\left(m-1\right)\ge0\)

\(\Rightarrow\min\limits_{x>1}g\left(x\right)\ge0\)

Do \(a=1>0;-\dfrac{b}{2a}=m-1\)

TH1: \(m-1\ge1\Rightarrow m\ge2\)

\(\Rightarrow g\left(x\right)_{min}=f\left(m-1\right)=\left(m-1\right)^2-2\left(m-1\right)^2+3\left(m-1\right)\ge0\)

\(\Rightarrow\left(m-1\right)\left(4-m\right)\ge0\Rightarrow1\le m\le4\Rightarrow2\le m\le4\)

TH2: \(m-1< 1\Rightarrow m< 2\Rightarrow g\left(x\right)_{min}=g\left(1\right)=m\ge0\)

Vậy \(0\le m\le4\)