K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

tích đúng mình làm cho

31 tháng 8 2021

Bài 1 : a) M là trung điểm AB 

                N là trung điểm AC 

         suy ra : MN là Đường trung bình của tam giác ABC 

         suy ra : MN // BC ; MN = BC/2

b) Ta có : MN // BC và M là trung điểm AB 

    Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD 

em chỉ giải được bài 1 thôi nên thông cảm ạ

  

           

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

2 tháng 10 2021

a) Ta có: AB//CD(ABCD là hthang cân)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\widehat{ODC}\\\widehat{OBA}=\widehat{OCD}\end{matrix}\right.\)

Mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hthang cân)

\(\Rightarrow\widehat{OBA}=\widehat{OAB}\)

=> Tam giác OAB cân tại O

b) Xét hthang ABCD có:

M là trung điểm AD(gt)

N là trung điểm BC(gt)

=> MN là đường trung bình

=> \(MN=\dfrac{AB+CD}{2}=\dfrac{6+10}{2}=8\left(cm\right)\)

2 tháng 10 2021

chị cho em hình vẽ được ko ạ

 

8 tháng 8 2023

A B C H M O E I G K

a/

O là giao 3 đường trung trực nên O là tâm đường tròn ngoại tiếp tg ABC

Nối AO cắt đường trong (O) tại E ta có

\(\widehat{ABE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow BE\perp AB\)

H là trực tâm tg ABC \(\Rightarrow CH\perp AB\)

=> BE//CH (1)

Ta có

\(\widehat{ACE}=90^o\) (Góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow CE\perp AC\)

H là trực tâm tg ABC \(\Rightarrow BH\perp AC\)

=> CE//BH (2)

Từ (1) và (2) => BHCE là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Do trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường mà G là trọng tâm tg ABC => M là trung điểm BC => M cũng là trung điểm của HE => MH = ME

Xét tg AHE có

MH=ME (cmt)

OA=OE

=> OM là đường trung bình của tg AHE \(\Rightarrow OM=\dfrac{1}{2}AH\) 

b/ 

Ta có M là trung điểm của BC (cmt) => OM là đường trung trực của BC \(OM\perp BC\)

\(AH\perp BC\)

=> OM//AH 

Xét tg AGH có

IA=IG (gt)

KH=KG (gt)

=> IK là đường trung bình của tg AGK => IK//AH mà OM//AH (cmt)

=> IK//OM \(\Rightarrow\widehat{GIK}=\widehat{GMO}\) (góc so le trong) (4)

IK là đường trung bình của tg AGH \(\Rightarrow IK=\dfrac{1}{2}AH\) mà \(OM=\dfrac{1}{2}AH\) (cmt) => IK = OM (5)

G là trong tâm tg ABC => \(GM=\dfrac{1}{2}AG\) mà \(IG=\dfrac{1}{2}AG\)

=> IG=GM (6)

Từ (4) (5) (5) => tg IGK = tg MGO (c.g.c)

c/

Nối H với O cắt AM tại G' Xét tg AHE

MH=ME (cmt) => AM là trung tuyến của tg AHE

OA=OE => HO là trung tuyến của tg AHE

=> G' là trọng tâm của tg AHE \(\Rightarrow G'M=\dfrac{1}{3}AM\)

Mà G là trọng tâm của tg ABC \(\Rightarrow GM=\dfrac{1}{3}AM\)

\(\Rightarrow G'\equiv G\) => H; G; O thẳng hàng

d/

Do G là trọng tâm của tg AHE => GH=2GO

 

 

 

 

 

1 tháng 10 2021

:)