K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 8 2021

\(\Leftrightarrow2xy-6x-5y=18\)

\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)

\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)

Phương trình ước số cơ bản

25 tháng 9 2019

Ta có: \(6x+5y+18=2xy\)

\(\Leftrightarrow6x+5y-2xy=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y=-18\)

\(\Leftrightarrow2x\left(3-y\right)+5y-15=-18-15\)

\(\Leftrightarrow2x\left(3-y\right)+5\left(y-3\right)=-33\)

\(\Leftrightarrow2x\left(3-y\right)-5\left(3-y\right)=-33\)

\(\Leftrightarrow\left(3-y\right)\left(2x-5\right)=-33\)

Dễ rồi

26 tháng 1 2023

x=3
y=1
ez:))

7 tháng 4 2023

giải thik

Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5

Mà (4;5)=1 => x chia hết cho 5

Mà 0 < 4x < 65

=> 0 < x < 17

=> x thuộc {5 ; 10 ; 15}

+ Với x = 5; ta có: 4 × 5 + 5 × y = 65

=> 20 + 5 x y = 65

=> 5 x y = 65 - 20 = 45

=> y = 45 : 5 = 9

+ Với x = 10, ta có: 4 × 10 + 5 x y = 65

=> 40 + 5 × y = 65

=> 5 x y = 65 - 40 = 25

=> y = 25 : 5 = 5

+ Với x = 15, ta có: 4 × 15 + 5 × y = 65

=> 60 + 5 × y = 65

=> 5 x y = 65 - 60 = 5

=> y = 5 : 5 = 1

Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1

chắc thek chứ mik ko chắc ăn

 

NV
18 tháng 2 2022

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)=4\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

\(\Rightarrow\left(y+1\right)^2\le4\Rightarrow\left[{}\begin{matrix}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{matrix}\right.\)

\(\Rightarrow y=\left\{-1;-3;1\right\}\)

Thế vào pt ban đầu tìm x nguyên tương ứng

18 tháng 2 2022

\(x^2+5y^2+2y-4xy-3=0\left(1\right)\\ \Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Ta có: \(\left(x-2y\right)^2+\left(y+1\right)^2=4\ge\left(y+1\right)^2\)

Mà \(y\in Z\Rightarrow\left(y+1\right)^2\in Z\Rightarrow\left(y+1\right)^2\in\left\{0;1;4\right\}\)

Với \(\left(y+1\right)^2=0\Rightarrow y+1=0\Rightarrow y=-1\)

Thay y=-1 vào pt (1) ta tìm được \(\left\{{}\begin{matrix}x=-4\\x=0\end{matrix}\right.\)

Với \(\left(y+1\right)^2=1\Rightarrow\left[{}\begin{matrix}y+1=1\\y+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=-2\end{matrix}\right.\)

Thay y=0 vào pt (1) ta không tìm được x nguyên 

Thay y=-2 vào pt (1) ta không tìm được x nguyên 

Với \(\left(y+1\right)^2=4\Rightarrow\left[{}\begin{matrix}y+1=-2\\y+1=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-3\\y=1\end{matrix}\right.\)

Thay y=-3 vào pt (1) tìm được \(x=-6\)

Thay y=1 vào pt (1) tìm được \(x=2\)

19 tháng 11 2016

Vì đây là toán casio nên được phép đùng máy tính để giải. Gợi ý bạn cách giải:

Ta tìm phần nguyên của \(\sqrt{260110}\)là 510. 

Ta tính 260110 - 5102 = 10

Vì y là số nguyên dương nhỏ nhất để cho 

260110 - 5y là 1 số chính phương nên

5y = 10  => y = 2

=> x = 8

20 tháng 11 2016

Bài này có dùng mode 7(TABLE) đc k nhỉ? alibaba nguyễn

AH
Akai Haruma
Giáo viên
14 tháng 1

Lời giải:
$x^2+5y^2+4xy=2023$
$\Leftrightarrow (x^2+4y^2+4xy)+y^2=2023$

$\Leftrightarrow (x+2y)^2+y^2=2023$

Ta biết rằng 1 scp khi chia cho $4$ dư $0$ hoặc $1$

Tức là $(x+2y)^2\equiv 0,1\pmod 4$ và $y^2\equiv 0,1\pmod 4$

$\Rightarrow (x+2y)^2+y^2\equiv 0,1,2\pmod 4$

Mà $2023\equiv 3\pmod 4$

Do đó không tồn tại $x,y$ nguyên để $(x+2y)^2+y^2=2023$