Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Chứng minh các số mũ đều có số dư bằng 33 khi chia cho 44
Đặt: {555777=4k1+3555333=4k2+3{555777=4k1+3555333=4k2+3 ta có:
333555777+777555333=3334k1+3+7774k2+3333555777+777555333=3334k1+3+7774k2+3
=3333.(3334)k1+7773.(7774)k2=3333.(3334)k1+7773.(7774)k2
=(...7¯¯¯¯¯¯¯¯).(...1¯¯¯¯¯¯¯¯)+(...3¯¯¯¯¯¯¯¯).(...1¯¯¯¯¯¯¯¯)=(...7¯¯¯¯¯¯¯¯)+(...3¯¯¯¯¯¯¯¯)=(...7¯).(...1¯)+(...3¯).(...1¯)=(...7¯)+(...3¯)
=(...0¯¯¯¯¯¯¯¯)⇒333555777+777555333=(...0¯)⇒333555777+777555333 có chữ số tận cùng là 00
⇔333555777+777555333⋮10⇔333555777+777555333⋮10 (Đpcm)
Vì x,y,z nguyên dương
Không mất tính toongr quát. Giả sử \(1\le x\le y\le z\)
Theo bài ra ta có: 2(x+y+z)=xyz
\(\Rightarrow\frac{x+y+z}{xyz}=\frac{1}{2}\)\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}\ge\frac{1}{2}\)
\(\Rightarrow\frac{3}{x^2}\ge\frac{1}{2}\)
\(\Rightarrow x^2\le6\)
\(\Rightarrow x=\left\{1;2\right\}\)(vì x nguyên dương)
* TH1: x=1 Ta có:
2(1+y+z)=yz
=>2+2y+2z-yz=0
=> (2y-yz)+(-4+2z)=-6
=>y(2-z)-2(2-z)=-6
=>(y-2)(z-2)=6
Vì y,z là số nguyên dương \(\left(y-2\right)\left(z-2\right)\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
Lập bảng giá trị:
y-2 | 1 | 2 | 3 | 6 |
y | 3 | 4 | 5 | 8 |
z-2 | 6 | 3 | 2 | 1 |
z | 8 | 5 | 4 | 3 |
*TH2: x=2 bạn làm tương tự
`1/x+1/y=1/3(x,y in NN^**)`
`=>(x+y)/(xy)=1/3`
`=>3(x+y)=xy`
`=>3x+3y=xy`
`=>xy-3x-3y=0`
`=>x(y-3)-3(y-3)-9=0`
`=>(x-3)(y-3)=9`
Vì `x,y in NN^**=>x-3,y-3 in ZZ`
`=>x-3,y-3 in Ư(9)={+-1,+-9}`
`*x-3=-1,y-3=-9`
`=>x=2,y=-6(KTM)`
`*x-3=1,y-3=9`
`=>x=4,y=12(tm)`
`*y-3=-1,x-3=-9`
`=>y=2,x=-6(KTM)`
`*y-3=1,x-3=9`
`=>y=4,x=12(tm)`
Vậy `(x,y)=(4,12),(12,4)`
Do 5y chia hết cho 5; 65 chia hết cho 5 => 4x chia hết cho 5
Mà (4;5)=1 => x chia hết cho 5
Mà 0 < 4x < 65
=> 0 < x < 17
=> x thuộc {5 ; 10 ; 15}
+ Với x = 5; ta có: 4 × 5 + 5 × y = 65
=> 20 + 5 x y = 65
=> 5 x y = 65 - 20 = 45
=> y = 45 : 5 = 9
+ Với x = 10, ta có: 4 × 10 + 5 x y = 65
=> 40 + 5 × y = 65
=> 5 x y = 65 - 40 = 25
=> y = 25 : 5 = 5
+ Với x = 15, ta có: 4 × 15 + 5 × y = 65
=> 60 + 5 × y = 65
=> 5 x y = 65 - 60 = 5
=> y = 5 : 5 = 1
Vậy x = 5; y = 9 hoặc x = 10; y = 5 hoặc x = 15; y = 1
chắc thek chứ mik ko chắc ăn