K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

\(A=\frac{2x^3+2y^3+2}{2xy+2}=\frac{x^3+x^3+1+y^3+y^3+1}{2xy+2}\ge\frac{3\sqrt[3]{x^6}+3\sqrt[3]{y^6}}{x^2+y^2+2}=\frac{3.2}{2+2}=\frac{3}{2}\)

\(A_{min}=2\) khi \(x=y=1\)

Lại có \(\left\{{}\begin{matrix}x;y\ge0\\x^2+y^2=2\end{matrix}\right.\) \(\Rightarrow0\le x;y\le\sqrt{2}\)

\(\Rightarrow x^2\left(x-\sqrt{2}\right)\le0\Rightarrow x^3\le x^2\sqrt{2}\)

Tương tự: \(y^3\le y^2\sqrt{2}\)

Mặt khác \(x;y\ge0\Rightarrow xy+1\ge1\)

\(\Rightarrow A\le\frac{a^2\sqrt{2}+b^2\sqrt{2}+1}{1}=1+2\sqrt{2}\)

\(A_{max}=1+2\sqrt{2}\) khi \(\left(a;b\right)=\left(0;\sqrt{2}\right)\) và hoán vị

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

19 tháng 7 2021

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

15 tháng 12 2015

GTLN =3

GTNN = 1

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?