K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

Từ x2 + 2xy + 7(x+y) + 7y+ 10 = 0 => (x + y)+ 7 .(x + y) + 6y+ 10 = 0   (*)

S = x+ y + 1 => x + y = S - 1

(*) => (S - 1)2 + 7.(S - 1) + 6y2 + 10 = 0 

=> S2 + 5S + 4 = -6y\(\le\) 0 với mọi y => S + 5S + 4 \(\le\) 0 

=> (S + 4)(S + 1)  \(\le\) 0 => S + 4 và S + 1 trái dấu

Giải 2 trường hợp => -4 \(\le\) S \(\le\) -1

=> GTNN của S bằng -4 khi y = 0 và x = -5

GTLN của S bằng -1 khi y = 0 và x = -2

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

24 tháng 3 2020

dài lắm nên mình làm tắt

1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7

<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7

<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25

<=> -4x + 34 = -5x - 25

<=> x + 34 = -25

<=> x = -25 - 34

<=> x = - 59

2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x

<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x

<=> -x^2 - 3x - 8 = -x^2 - 2x + 9

<=> -3x - 8 = -2x + 9

<=> -x - 8 = 9

<=> -x = 9 + 8

<=> x = -17

3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2

<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2

<=> 2x^2 + 5x + 9 = 2x^2 - 8

<=> 5x + 9 = -8

<=> 5x = -8 - 9

<=> 5x = -17

<=> x = -17/5

4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3

<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3

<=> 12x - 33 = -7x + 3

<=> 19x - 33 = 3

<=> 19x = 3 + 33

<=> 19x = 36

<=> x = 36/19

5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)

<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72

<=> -16x + 64 = -72

<=> -16x = -72 - 64

<=> -16x = -136

<=> x = 136/16 = 17/2

6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3

<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3

<=> -x - 43 = 7x + 12

<=> -8x - 43 = 12

<=> -8x = 12 + 43

<=> -8x = 55

<=> x = -55/8

7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)

<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x

<=> 3x^2 - 12x + 11 = 3x^2 - x

<=> -12x + 11 = -x

<=> 11 = -x + 12x

<=> 11 = 11x

<=> x = 1

8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)

<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x

<=> -52 - x^3 = 5 - x^3 + 2x

<=> -52 = 5x + 2x

<=> -5x - 2x = 52

<=> -7x = 52

<=> x = -52/7

9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)

<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x

<=> 6x + 28 = 5 + 3x

<=> 6x + 28 - 3x = 5

<=> 3x + 28 = 5

<=> 3x = 5 - 28

<=> 3x = -23

<=> x = -23/3

10)  (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)

<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7

<=> -53 - 4x = 6x - 17

<=> -4x = 6x + 36

<=> -4x - 6x = 36

<=> -10x = 36

<=> x = -36/10 = -18/5

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

19 tháng 7 2021

Theo đề bài, ta có:

\(x^3+y^3=x^2-xy+y^2\)

hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)

+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)

+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)

Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

6 tháng 12 2017

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

3 tháng 10 2020

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

28 tháng 9 2019

Lời giải của bạn Thái và Hà chưa hợp lý, còn lời giải của bạn An hợp lý, vì :

  • Hai bạn Thái và Hà phân tích đa thức thành nhân tử chưa triệt để, vì ở lời giải của hai bạn, có nhân tử vẫn phân tích được tiếp.
  • Còn ở bạn An thì phân tích đã hợp lý, vì trong các nhân tử, không có nhân tử nào phân tích được tiếp.
13 tháng 12 2015

ai ủng hộ 9 li-ke tròn 100 Điểm hỏi đáp , thanks trước nha