K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

A B c D M N P Q

a)gọi gđ của AM và DC là P. gđ của BN và DC là Q

ta có: ^BAD+^ADC=180( và AB//DC)

=>1/2. ^BAD  +1/2.^ADC =90

=> ^MAD+^MDA = 90 ( vì AM và DM lần lượt là pg của ^A và ^D)

=> DM \(⊥\)AP

c/ tương tự ta đc: CN \(⊥\)BQ

xét tg ADP có: DM lad pg của ^D (gt) và DM\(⊥\) AP (cmt)  => tg ADP cân tại D => DM cx là dg trung tuyến ứng vs AP

=> M là t/đ của AP

c/m tương tự ta đc: tg BQC cân tại C => N là t/đ của BQ

xét hthang ABQP ( vì AB// DC mà P;Q thuộc DC)  có:

M là t/đ của AP (cmt) và N là t/đ của BQ (cmt)

=> MN là đg trung bình của hthang ABQP => MN//AB (đpcm)

b) do tg ADP cân tại D (câu a) => AD=PD =d

do tg BQC cân tại C(câu a) => BC=QC=b

 ta có MN là đg trung bình của hthang ABQP (câu a) => MN=\(\frac{1}{2}.\left(AB+PQ\right)\)

         =>MN=\(\frac{1}{2}.\left(AB+PC+CQ\right)\)

   =>MN=\(\frac{1}{2}.\left(AB+DC-PD+QC\right)\)

   =>MN=\(\frac{1}{2}.\left(AB+DC-AD+BC\right)\)  (vì PD=AD và QC=BC)

  =>MN=\(\frac{1}{2}.\left(a+c-d+b\right)\)

25 tháng 9 2016

a/ AB //CD (với AB < CD) phân giác góc ngoài tại và D cắt nhau tại M, --> AM vuông góc MD (phân giác của hai góc bù nhau), AM kéo dài cắt DC tại Q Trong tg AQD có DM phân giác và đường cao --> 
tg ADQ cân ại D --> M trung điểm AQ 
--> tương tự BN và BN vuông góc CN và BN kéo dài cắt DC tại R --> tg BCR cân tại C và N trung điểm BR --> MN đườn trung bình của tg của hình thang ABRQ --> MN // AB --> MN // CD 
b/ Trong hình hang ARBQ có 2MN = AB + QR (MN đường trung bình của hình thang ARBQ) 
--> 16 = AB + QD + CD + CP = AB + AD + CD + BC ( vì QD = AD, CR = BC) 
--> Chu vi hình thang = 16 cm

25 tháng 9 2016

a) MN // với CD nha các bạn

7 tháng 9 2021

Giups e với ạ