Cho \(a=m^2+n^2\)
\(b=m^2-n^2\)
\(c=2mn\)
Chứng minh rằng: Nếu m>n>0 thì a,b,c là độ dài 3 cạnh của tam giác vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 = (m2 + n2)2 = m4 + 2m2.n2 + n4
b2 = (m2 - n2)2 = m4 - 2m2.n2 + n4
c2 = (2mn)2 = 4m2.n2
Nhận xét: a2 - b2 = c2 => a2 = b2 + c2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)
\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)
=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c
cho m>n>0 và gọi a=m^2+n^2; b=m^2-n^2; c=2*m-n. chứng minh a,b,c là độ dài 3 cạnh của tam giác vuông
a2 = (m2 + n2)2 = m4 + 2m2.n2 + n4
b2 = (m2 - n2)2 = m4 - 2m2.n2 + n4
c2 = (2mn)2 = 4m2.n2
Nhận xét: a2 - b2 = c2 => a2 = b2 + c2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
Bài 1: có lẽ là thuộc R
Áp dụng BĐT Cauchy-Schwarz ta có:
\(A=\left(x^2\right)^2+\left(y^2\right)^2\ge\left(x^2+y^2\right)^2\ge\left(\left(x+y\right)^2\right)^2\)
\(=\left(6^2\right)^2=36^2=1296\)
Khi \(x=y=\sqrt{3}\)
Bài 2:
Ta có:
\(\left(m^2+n^2\right)^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2\left(1\right)\)
\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4-2m^2n^2+n^4+4m^2n^2\)
\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4+2m^2n^2+n^4\) (luôn đúng)
Từ (1) suy ra \(a^2=b^2+c^2\)
Theo định lý py-ta-go đảo thì ta có đpcm
\(m>n>0\Rightarrow\left\{{}\begin{matrix}a>0\\b>0\\c>0\end{matrix}\right.\)
\(b^2+c^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2=m^4+n^4+2m^2n^2=\left(m^2+n^2\right)^2=a^2\)
\(\Rightarrow a;b;c\) là độ dài 3 cạnh của 1 tam giác vuông theo định lý Pitago đảo