K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2015

a2 = (m2 + n2) = m4 + 2m2.n2 + n4

b2 = (m2 - n2)2   = m4 - 2m2.n2 + n4 

c2 = (2mn)2 = 4m2.n2 

Nhận xét:  a2 - b2 = c2 => a2 = b2 + c2

Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông

19 tháng 10 2016

\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)

\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)

=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c

7 tháng 11 2016

a2 = (m2 + n2) = m4 + 2m2.n2 + n4

b2 = (m2 - n2)2   = m4 - 2m2.n2 + n4 

c2 = (2mn)2 = 4m2.n2 

Nhận xét:  a2 - b2 = c2 => a2 = b2 + c2

Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông

NV
26 tháng 9 2020

\(m>n>0\Rightarrow\left\{{}\begin{matrix}a>0\\b>0\\c>0\end{matrix}\right.\)

\(b^2+c^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2=m^4+n^4+2m^2n^2=\left(m^2+n^2\right)^2=a^2\)

\(\Rightarrow a;b;c\) là độ dài 3 cạnh của 1 tam giác vuông theo định lý Pitago đảo

21 tháng 7 2017

Bài 1: có lẽ là thuộc R

Áp dụng BĐT Cauchy-Schwarz ta có:

\(A=\left(x^2\right)^2+\left(y^2\right)^2\ge\left(x^2+y^2\right)^2\ge\left(\left(x+y\right)^2\right)^2\)

\(=\left(6^2\right)^2=36^2=1296\)

Khi \(x=y=\sqrt{3}\)

Bài 2:

Ta có: 

\(\left(m^2+n^2\right)^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2\left(1\right)\)

\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4-2m^2n^2+n^4+4m^2n^2\)

\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4+2m^2n^2+n^4\)  (luôn đúng)

Từ (1) suy ra \(a^2=b^2+c^2\)

Theo định lý py-ta-go đảo thì ta có đpcm