Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng tổng của bốn số chính phương lẻ có thể là một số chính phương
giúp mk vs mn
Nhớ rằng: Số chính phương=Bình phương của 1 số ---> Chỉ có thể chia 4 dư 0 hoặc dư 1
Chứng minh: Xét bình phương số lẻ: \(\left(2n+1\right)^2=4\left(n^2+n\right)+1\)---> Chia 4 dư 1
Xét bình phương số chẵn: \(\left(2n\right)^2=4n^2⋮4\)
Giờ ta xét tổng 4 số chính phương lẻ:
\(\left(2a+1\right)^2+\left(2b+1\right)^2+\left(2c+1\right)^2+\left(2d+1\right)^2\)
\(=4\left(a^2+b^2+c^2+d^2+a+b+c+d+1\right)⋮4\)---> Hoàn toàn có thể là số chính phương
Nhớ rằng: Số chính phương=Bình phương của 1 số ---> Chỉ có thể chia 4 dư 0 hoặc dư 1
Chứng minh: Xét bình phương số lẻ: \(\left(2n+1\right)^2=4\left(n^2+n\right)+1\)---> Chia 4 dư 1
Xét bình phương số chẵn: \(\left(2n\right)^2=4n^2⋮4\)
Giờ ta xét tổng 4 số chính phương lẻ:
\(\left(2a+1\right)^2+\left(2b+1\right)^2+\left(2c+1\right)^2+\left(2d+1\right)^2\)
\(=4\left(a^2+b^2+c^2+d^2+a+b+c+d+1\right)⋮4\)---> Hoàn toàn có thể là số chính phương