Cho tam giác ABC vuông tại A Vẽ trung tuyến AM Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a, Chứng minh: tam giác MAB bằng tam giác MDC suy ra góc ACD vuông.
b, Gọi K là trung điểm của AC. Chứng minh KB = KC.
c, KD cắt BC tại I, KB cắt AD tại N. CM : Tam Giác KNI cân.
d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.
(Cần gấp ngay phần d, ạ!!!)
câu a: xét 2 tam giác MAB vs MCD :
ta có : AM = DM (gt)
góc BMA = góc DMC ( đối đỉnh)
MB = MC (gt)
=> tam giác MAB = tam giác MDC (c.g.c)
câu b: ta có : AC > AB
AB = CD ( 2 cạnh tương ứng)
=> AC > CD ( tính chất bắt cầu )
câu c: xét 2 tam giác ABK va ADK
ta có : AB = DC ( như câu a)
KA = KC ( gt )
=> tam giác ABK = tam giác CDK ( 2 cạnh góc vuông )
câu d : xét 2 tam giác NAK và ICK
ta có : AK = KC ( gt )
góc NAK = góc ICK (Vì :
*1: có góc A = góc C ( vuông )
*2:góc BAN = DCI ( như câu a)
từ *1 và *2 => góc A - góc BAN = góc NAK và góc C - góc DCI = góc ICK
=> góc NAK = góc ICK )
góc DKC = góc BKA ( như câu c )
=> tam giác NAK = tam giác ICK ( g.c.g )
=> NK = NI ( 2 cạnh tương ứng )
=> tam giác NKI cân tại K ( vì có NK = IK) .
Hy vọng nó đúng vì tui ko chắc ăn tam giác ACD có vuông hay ko . chúc bạn hc giỏi
d,CM AM<1/2(AB+AC).Điều này không đúng nếu tam giác ABC không là tam giác vuông.