Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.
Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC
Xét tam giác DMB và tam giác CMA
Có: CM=MB ( M trugn điểm)
DM=AM ( gt)
^DMB=^CMA (đđ)
Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^
B suy tiếp nhé!
Bạn tự vẽ hình nha!
Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)
\(225=81+AC^2\)
\(\Rightarrow AC^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
Xét tam giác MAB và tam giác MDC:
Có: DM=AM (gt)
CM=MB (AM trung tuyến)
Góc DMC=Góc AMB (đđ)
Vậy tam giác MAB= tam giác MDC (C.G.C)
a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
b: XétΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
a: Xét ΔMAC và ΔMDB có
MA=MD
góc AMC=góc DMB
MC=MB
=>ΔMAC=ΔMDB
b: ΔMAC=ΔMDB
=>góc MAC=góc MDB
=>AC//DB
=>DB vuông góc AB
ΔABC vuông tại A
mà AM là trung tuyến
nên AM=1/2BC
Mình ghi nhầm:
a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
a) Xét ΔMAB và ΔMKC có
MA=MK(gt)
\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMKC(c-g-c)
a: Xét ΔMAB và ΔMKC có
MA=MK
góc AMB=góc KMC
MB=MC
=>ΔMAB=ΔMKC
b: ΔMAB=ΔMKC
=>góc MAB=góc MKC
=>AB//KC
=>KC vuông góc AC
=>góc ACK=90 độ
c: Xét ΔIAB vuông tại A và ΔICK vuông tại C có
IA=IC
AB=CK
=>ΔIAB=ΔICK
=>IB=IK
d: Xét ΔABC có CI/CA=CM/CB
nên IM//AB
=>IM vuông góc KB