K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2015

\(\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{25}=3+5=8=\sqrt{64}=\sqrt{65-1}\)

21 tháng 12 2015

\(\sqrt{65-1}=\sqrt{64}=8\)

\(\sqrt{7}<\sqrt{9};\sqrt{15}<\sqrt{16}\rightarrow\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{16}=3+4=7<8\)

Do đó phải điền dấu < 

3 tháng 8 2023

\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)

\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có  \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)

\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)

3 tháng 8 2023

So sánh gì thế em, em nhập đủ đề vào hi

ta thấy \(\sqrt{65}>\sqrt{64}\Leftrightarrow\sqrt{65}-1>\sqrt{64}-1\)

mà ta có \(\sqrt{64}-1=8-1=4+3=\sqrt{16}+\sqrt{9}\)

lại có \(\sqrt{16}>\sqrt{15};\sqrt{9}>\sqrt{8}\Leftrightarrow\sqrt{16}+\sqrt{9}>\sqrt{15}+\sqrt{8}\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

11 tháng 11 2018

\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

1 tháng 9 2019

a) 

Ta có:

\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)

\(=31+2\sqrt{130}\)(1)

Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)

Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)

13 tháng 9 2019

a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)

b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)

\(\sqrt{65}>\sqrt{64}=8\)

\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)

5 tháng 6 2019

a) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)

\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

b) \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=1,5\)

mà 1,52 = 2,25 ; \(\sqrt{2}^2=2\)

\(\Rightarrow1,5>\sqrt{2}\)hay \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)

19 tháng 10 2021

Ta có:

\(\sqrt[3]{7}< \sqrt[3]{8}=2\) và \(\sqrt{15}< \sqrt{16}=4\), suy ra \(\sqrt[3]{7}+\sqrt{15}< 6\).

\(\sqrt{10}>\sqrt{9}=3\) và \(\sqrt[3]{28}>\sqrt[3]{27}=3\), suy ra \(\sqrt{10}+\sqrt[3]{28}>6\).

Vậy \(\sqrt[3]{7}+\sqrt{15}< \sqrt{10}+\sqrt[3]{28}\).

22 tháng 12 2016

Nhầm

\(a^2=22-2\sqrt{105}=22-\sqrt{420}>22-\sqrt{441}=22-21=1\)

Kết luận giao luu=

1<a<2

22 tháng 12 2016

Giao luu:

\(a=\sqrt{15}-\sqrt{7}\Rightarrow a^2=22-2\sqrt{105}>22-2.\sqrt{100}=22-20=2\)

\(\sqrt{15}>\sqrt{7}\Rightarrow a>0\Rightarrow a>\sqrt{2}>1\Rightarrow a>1\)

27 tháng 6 2017

Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\) (1)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\) (2)

Từ (1) và (2) suy ra \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

12 tháng 7 2021

a) Ta có: \(2=\sqrt{4}\)

Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)

b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)

Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)

c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)

\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)

Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)

\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)

12 tháng 7 2021

bạn ơi câu c) 16 lấy đâu ra ạ