Tìm số tự nhiên n không vượt quá 2012 sao cho \(M=26n+17\) là 1 SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cặp số cần tìm là a và b với a,b ≠ 0 . Vì ƯCLN của hai số đó là 17 ⇒ a và b chia hết cho 17 hay a và b đều là bội của 17.
B(17) = {0; 17; 34; 51; 68; …}
Vì các cặp số tự nhiên khác 0, không vượt quá 60 nên a và b thuộc {17; 34; 51}
Do đó ta có các cặp số (a; b) là (17; 34); (17; 51); (34; 51)
Thử lại: ƯCLN(17; 34) = 17 nên (17; 34) thỏa mãn
ƯCLN(17; 51) = 17 nên (17; 51) thỏa mãn
ƯCLN(34; 51) = 17 nên (34; 51) thỏa mãn
Vậy các cặp số cần tìm là (17; 34); (17; 51); (34; 51)
có 3 cặp đó là 17 và 34 ; 34 và 51 ; 17 và 51 .
Gọi \(k^2=26n+17\), tức là \(k^2\) đồng dư 17 (mod 26).
Ta giải phương trình đồng dư này bằng cách cho \(k\) đồng dư 0, cộng trừ 1, ..., cộng trừ 13.
Thì sẽ thấy \(k=26x+11\) hoặc \(k=26x+15\).
Vậy \(n=\frac{\left(26x+11\right)^2-17}{26}\) hoặc \(n=\frac{\left(26x+13\right)^2-17}{26}\) với mọi \(x\) nguyên không âm.
Giả sử 26n + 17 = k2 ( với k là số tự nhiên lẻ ). Khi đó:
26n + 13 = ( k - 2 ).( k + 2 ) <=> 13.( 2n + 1 ) = ( k - 2 ).( k + 2 )
Do 13.( 2n + 1 ) chia hết cho 13 nên ( k - 2 ) chia hết cho 13 hoặc ( k + 2 ) chia hết cho 13.
Nếu ( k - 2 ) chia hết cho 13 thì k = 13t + 2 ( t là số lẻ ), khi đó...
Đáp án cần chọn là: D
Gọi B là tập hợp các số tự nhiên chẵn lớn hơn 10 nhưng không vượt quá 2012.
B={1012;1014;1016;...;2008;2012}
Xét dãy số 1012;1014;1016;...;2008;2012
Ta thấy dãy trên là dãy số cách đều 2 đơn vị
Số số hạng của dãy số trên là: (2012−1012):2+1=501số hạng
Số phần tử của tập hợp B cũng chính là số số hạng của dãy số trên
Nên tập hợp các số tự nhiên chẵn lớn hơn 1010 nhưng không vượt quá 2012 có 501 phần tử
Để AA là số chính phương ⇒26n+17=t2(t∈N)⇒26n+17=t2(t∈N)
⇒26n+13=t2−4⇒26n+13=t2−4
⇒13(2n+1)=(t−2)(t+2)(1)⇒13(2n+1)=(t−2)(t+2)(1)
⇒(t−2)(t+2)⋮13⇒(t−2)(t+2)⋮13⇒⎡⎣t−2⋮13t+2⋮13⇒[t−2⋮13t+2⋮13
*)Xét t+2⋮13⇒t+2=13m(m∈N)t+2⋮13⇒t+2=13m(m∈N)⇒t=13m−2⇒t=13m−2
Thay vào (1)(1)⇒13(2n+1)=13m(13m−4)⇒13(2n+1)=13m(13m−4)
⇒2n+1=m(13m−4)⇒n=13m2−4m−12⇒2n+1=m(13m−4)⇒n=13m2−4m−12
*)Xét t−2⋮13⇒t−2=13m(m∈N)t−2⋮13⇒t−2=13m(m∈N)⇒t=13m+2⇒t=13m+2
Thay vào (1)(1)⇒13(2n+1)=13m(13m+4)⇒13(2n+1)=13m(13m+4)
⇒2n+1=m(13m+4)⇒2n+1=m(13m+4)⇒n=13m2+4m−12⇒n=13m2+4m−12
Vậy.....
chúc bạn hok tốt
đặt \(\hept{\begin{cases}n+5=x^2\\n+30=y^2\end{cases}\left(x;y\in N;x,y>0\right)}\)
\(\Leftrightarrow y^2-x^2=25\Leftrightarrow\left(y-x\right)\left(y+x\right)=1.25\)(vì x,y thuộc N, x,y>0)
lại có y-x<y+x nên \(\hept{\begin{cases}y+x=1\\y+x=25\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=12\end{cases}}}\)
thay vào ta được n=139 thỏa mãn