K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

\(\frac{4m-2n}{4m+5n}\) với \(\frac{m}{n}=\frac{1}{5}\)

Ta có : \(\frac{m}{n}=\frac{1}{5}\)hay \(\frac{m}{1}=\frac{n}{5}\)

Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)

Do đó \(\frac{4m-2n}{4m+5n}=\frac{4k-2\cdot5k}{4k+5\cdot5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)

b. \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}\)

Ta có : x - y = 7 => x = 7 + y

Do đó \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)

\(=\frac{14+2y+7}{21+3y-y}+\frac{2y-7}{3y-7-y}\)

\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)

7 tháng 8 2020

a) \(\frac{m}{n}=\frac{1}{5}\Rightarrow\frac{m}{1}=\frac{n}{5}\)

Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)

Thế vào ta được :

\(\frac{4m-2n}{4m+5n}=\frac{4k-2.5k}{4k+5.5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)

b) x - y = 7 => x = 7 + y

Thế vào ta được :

\(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)

\(=\frac{21+2y}{21+2y}+\frac{2y-7}{3y-7-y}\)

\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)

a: \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7x=14\\2x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=5-2x=5-2\cdot2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}-x+2y=2\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x+4y=4\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\x-2y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\x=-2+2y=-2+2\cdot1=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}2x-y=13\\y-5=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=13\\y=-7+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+13=-2+13=11\\y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=-2\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}3x+y=8\\2x-3y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x+3y=24\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=25\\3x+y=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{25}{11}\\y=8-3x=8-3\cdot\dfrac{25}{11}=8-\dfrac{75}{11}=\dfrac{13}{11}\end{matrix}\right.\)

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

13 tháng 11 2023

a: Tọa độ giao điểm của đường thẳng (d1) và đường thẳng (d2) là:

\(\left\{{}\begin{matrix}3x-1=2x+1\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2x=2+1\\y=2x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3\\y=2\cdot3+1=7\end{matrix}\right.\)

Thay x=3 và y=7 vào (d), ta được:

\(3\left(4m+5\right)-2m+7=7\)

=>\(12m+15-2m=0\)

=>10m=-15

=>m=-3/2

b: để (d)//(d3) thì \(\left\{{}\begin{matrix}4m+5=-3\\-2m+7< >2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=-3-5=-8\\-2m< >-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m< >\dfrac{5}{2}\end{matrix}\right.\)

=>m=-2

10 tháng 3 2017

có onl k mk dạy cách làm bài2, bài1 bn bit lam r

10 tháng 3 2017

có onl, cảm ơn nha ^^

https://i.imgur.com/eiGia4V.jpg
22 tháng 3 2020
https://i.imgur.com/io4YZ8T.jpg