K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

a,A=x^2+2.x.5/2+25/4+3/4

    =(x+5/2)2+3/4

nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4

vậy GTNN của A là 3/4

b,B=6x-x2-5

    = - (x2-6x+5)

    = - (x2-2.x.3+9-4)

    =-[(x-3)2-4]

    =-(x-3)^2+4

nx; -(x-3)^2 luôn nhỏ  hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4

Vậy GTLN của B là 4

24 tháng 7 2019

Ta có \(A=\frac{3x+4}{x^2+1}\)

=> \(Ax^2-3x+A-4=0\)

\(A=0\)

=> \(x=-\frac{4}{3}\)

\(A\ne0\)=> \(x\ne-\frac{4}{3}\)

=> \(\Delta=9-4A\left(A-4\right)\ge0\)

=> \(4A^2-16A-9\le0\)

=> \(-\frac{1}{2}\le A\le\frac{9}{2}\)

=> \(MinA=-\frac{1}{2}\)khi x=-3(TM \(x\ne\frac{-4}{3}\))

\(Max=\frac{9}{2}\)khi \(x=\frac{1}{3}\)(TM \(x\ne-\frac{4}{3}\))

4 tháng 11 2017

bằng 1 nha bạn

22 tháng 9 2021

Ta có: |x - 1| \(\ge\)0 với mọi x => |x - 1| + 5 \(\ge\)5

=> A \(\ge\)5

Dấu "=" xảy ra<=> x - 1 = 0 <=> x = 1

Vậy MinA = 5 <=> x=  1

22 tháng 9 2021

\(A=|x-1|+5\)

Để A nhỏ nhất thì \(|x-1|\)phải nhỏ nhất

Mà: \(|x-1|\ge0\)

\(\Rightarrow\)\(|x-1|\)nhỏ nhất bằng 0

\(\Rightarrow\)\(|x-1|=0\)

\(\Rightarrow\)\(x-1=0\)

\(\Rightarrow\)\(x=1\)

Vậy giá trị nhỏ nhất của A là 5 khi \(x=1\)

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

9 tháng 11 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

a) Vì \(-1< 0\) nên không tính được A

a) Vì \(x\ne1\) nên không tính được A

 

30 tháng 10 2023

a) \(P=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}-2}+\dfrac{x+\sqrt{x}-2}{\sqrt{x}+2}\)

\(P=\dfrac{\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot2+2^2}{\sqrt{x}-2}+\dfrac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}+2}\)

\(P=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-2}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)

\(P=\left(\sqrt{x}-2\right)+\left(\sqrt{x}-1\right)\)

\(P=\sqrt{x}-2+\sqrt{x}-1\)

\(P=2\sqrt{x}-3\)

b) Để: \(P=-x\) thì:

\(2\sqrt{x}-3=-x\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)

Mà: \(\sqrt{x}+3\ge3>0\forall x\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\left(tm\right)\)

20 tháng 6 2021

a)

A=\(\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5x-5}\)

\(\Leftrightarrow\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right)\div\dfrac{2x}{5\left(x-1\right)}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+1\\x=0-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

MTC: 5(x-1)(x+1)

\([\dfrac{5\left(x+1\right)\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}-\dfrac{5\left(x-1\right)\left(x-1\right)}{5\left(x-1\right)\left(x+1\right)}]\div\dfrac{2x\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow[5\left(x+1\right)\left(x+1\right)-5\left(x-1\right)\left(x-1\right)]\div2x\left(x+1\right)\)

\(\Leftrightarrow[5\left(x+1\right)^2-5\left(x-1\right)^2]\div2x^2+2x\)

\(\Leftrightarrow[5\left(x^2+2x+1\right)-5\left(x^2-2x+1\right)]\div2x^2+2x\)

\(\Leftrightarrow(5x^2+10x+5-5x^2+10x-5)\div2x^2+2x\)

\(\Leftrightarrow20x\div\left(2x^2+2x\right)\)

\(\Leftrightarrow10x+10\)

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

30 tháng 12 2020

undefined

30 tháng 12 2020

ê này nhầm rồi kìa 

x = 1 (ktm đkxđ) lm s thay vào đc 

x + 1 = -10

=> x = -8 ?? =)))

chưa già đã lẫn là saoooo