Cho \(\frac{4}{m}\)-\(\frac{1}{n}\)=1(m,n ≠0). Chứng minh m⋮n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{m+n+p}=0\)
\(\Leftrightarrow\frac{m+n}{mn}+\frac{m+n}{p\left(m+n+p\right)}=0\)
\(\Leftrightarrow\left(m+n\right)\left(\frac{pm+pn+p^2+mn}{mnp\left(m+n+p\right)}\right)=0\)
\(\Leftrightarrow\left(m+n\right)\left(n+p\right)\left(p+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-n\\m=-p\\p=-n\end{matrix}\right.\)
Cả 3 TH là như nhau
Ví dụ như TH1: \(\frac{1}{m^{2017}}+\frac{1}{-m^{2017}}+\frac{1}{p^{2017}}=\frac{1}{p^{2017}}\)
\(\frac{1}{m^{2017}-m^{2017}+p^{2017}}=\frac{1}{p^{2017}}\) (đpcm)
Bạn tham khảo:
Câu hỏi của Ngo Hiệu - Toán lớp 9 | Học trực tuyến
giải đàng hoàng ra, giáo viên mà copy à, k lm gương tí gì
Ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)
Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)
Thế vào điều kiện đề bài ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)
Ta cần chứng minh
\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh là đúng.