Cho a ; b ; c là độ dài 3 cạnh của một tam giác .
Chứng minh : \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
Ta có a, b , c là 3 cạnh của 1 tam giác
=> Đặt: z = a + b - c > 0 ; x = b + c - a> 0 ; y = a + c - b>0
khi đó: x + y + z = a + b + c
và \(a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
Để chứng minh: \(\frac{ab}{a+b-c}+\frac{bc}{-a+b+c}+\frac{ac}{a-b+c}\ge a+b+c\)(1)
Ta cần chứng minh:
\(\frac{\left(y+z\right)\left(x+z\right)}{4z}+\frac{\left(x+z\right)\left(z+y\right)}{4x}+\frac{\left(y+z\right)\left(x+y\right)}{4y}\ge x+y+z\)
<=> \(\frac{xy+xz+zy+x^2}{z}+\frac{yz+x^2+yx+xz}{x}+\frac{xz+xy+y^2+yz}{y}\ge4\left(x+y+z\right)\)
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)(2)
Ta có: \(\frac{\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2}{3}\ge\frac{xy}{z}.\frac{yz}{x}+\frac{yz}{x}.\frac{zx}{y}+\frac{zx}{y}.\frac{xy}{z}\)
\(=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) với mọi x; y ; z
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\) với mọi x; y ; z dương
Vậy (2) đúng do đó (1) đúng,
Nguyễn Linh Chi hỏi nhé : nếu x + y + z thì phải = 2 ( a + b + c ) chứ