Trong mặt phẳng xOy cho điểm M(9;1) . Lập phương trình đường thẳng d đi qua điểm M cắt 2 tia Ox , Oy lần lượt tại 2 điểm A,B sao cho diện tích tam giác OAB nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Dễ thấy A, B nằm khác phía so với mặt phẳng (xOy). Gọi B’ là điểm đối xừng với B qua (xOy). Thế thì B ' - 1 ; 4 ; 3 và M B = M B ' . Khi đó
Đẳng thức xảy ra khi và chỉ khi M, A, B’ thẳng hàng và M nằm ngoài đoạn AB’. Như vậy M cần tìm là giao điểm của đường thẳng AB’ và mặt phẳng (xOy). Đường thẳng AB có phương trình
Từ đó tìm được M(5, 1, 0).
\(\overrightarrow{MN}=\left(1;-3\right)\Rightarrow MN=\sqrt{10}\)
Đặt \(AB=a\)
Qua N kẻ đường thẳng song song BC cắt AB và CD lần lượt tại P và Q, gọi F là trung điểm CD \(\Rightarrow MF\) song song và bằng BC
Theo Talet: \(\dfrac{PN}{BC}=\dfrac{AP}{AB}=\dfrac{AN}{AC}=\dfrac{3}{4}\Rightarrow PN=\dfrac{3a}{4}\) ; \(DQ=AP=\dfrac{3a}{4}\) ; \(MP=NQ=\dfrac{a}{4}\)
\(\Rightarrow MN^2=10=MP^2+PN^2=\dfrac{a^2}{16}+\dfrac{9a^2}{16}\Rightarrow a=4\)
\(\Rightarrow MF=4\) ; \(NQ=FQ=\dfrac{a}{4}\Rightarrow FN=\sqrt{NQ^2+FQ^2}=a\sqrt{2}\) ;
Đặt \(F\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MF}=\left(x-1;y-2\right)\\\overrightarrow{NF}=\left(x-2;y+1\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y-2\right)^2=MF^2=16\\\left(x-2\right)^2+\left(y+1\right)^2=FN^2=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}F\left(1;-2\right)\\F\left(\dfrac{17}{5};-\dfrac{6}{5}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\overrightarrow{MF}=\left(0;-4\right)=-4\left(0;1\right)\\\overrightarrow{MF}=\left(\dfrac{12}{5};-\dfrac{16}{5}\right)=\dfrac{4}{5}\left(3;-4\right)\end{matrix}\right.\)
Phương trình CD:
\(\left[{}\begin{matrix}0\left(x-1\right)+1\left(y+2\right)=0\\3\left(x-\dfrac{17}{5}\right)-4\left(y+\dfrac{6}{5}\right)=0\end{matrix}\right.\)
d song song voi duong thang x=y thi khoảng cách từ o(0;0) đến đường thẳng d lớn nhất
Chọn B.
Dễ thấy các điểm A, B, C có tọa độ là A(-a, b, c), B(a, -b, c), C(a, b, -c). Thế thì tọa độ trọng tâm G của tam giác ABC sẽ là G a 3 ; b 3 ; c 3
\(\left\{{}\begin{matrix}\overrightarrow{MB}.\overrightarrow{MC}=0\\MB=MC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[\left(x_B-x\right)\overrightarrow{i}+\left(y_B-y\right)\overrightarrow{j}\right]\left[\left(x_c-x\right)\overrightarrow{i}+\left(y_C-y\right)\overrightarrow{j}\right]=0\\\sqrt{\left(x_B-x\right)^2+\left(y_B-y\right)^2}=\sqrt{\left(x_C-x\right)^2+\left(y_C-y\right)^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-x\right)\left(-3-x\right)+\left(-2-y\right)\left(-1-y\right)=0\\\left(4-x\right)^2+\left(-2-y\right)^2=\left(-3-x\right)^2+\left(-1-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-x+3y-10=0\\y+5=7x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-1\right)=0\\y=7x-5\end{matrix}\right.\)
\(\Rightarrow\)M(x;y): (0;-5) ; (1;2)
Đáp án A
Đường thẳng d qua A ( 1 ; 2 ; − 3 ) và vuông góc (Q) có phương trình x = 1 + 3 t y = 2 + 4 t z = − 3 − 4 t .
Vì B = d ∩ P ⇒ B 1 + 3 t ; 2 + 4 t ; − 3 − 4 t ∈ P ⇒ t = − 1 ⇒ B − 2 ; − 2 ; 1
Ta có M ∈ P M A ⊥ M B ⇒ M thuộc đường tròn giao tuyến của P và mặt cầu S (tâm I, đường kính AB)
Phương trình mặt cầu S là x + 1 2 2 + y 2 + z + 1 2 = 41 4 .
Và d I , P = 2. − 1 2 + 2.0 + 1 + 9 3 = 3
Khi đó B K = I B 2 − d 2 = 5 2 với K là tâm đường tròn giao tuyến của (P) và (S).
Để MB lớn nhất ⇔ MB là đường kính đường tròn giao tuyến ⇒ M B = 2 B K = 5 .