cho 2 đường tròn ( o ) (o') cắt nhau tại A và B . Một đường thẳng qua A cắt ( o ) (o') lần lượt tại C và D . vác tiếp tuyến tại C và D của 2 đường tròn cắt nhau tại K . Nối KB với CD tại i . kẻ ie//BD
a, chứng minh tam giác BÔ' đồng dạng tam giác BCD
b,chứng minh tứ giác BCKD nội tiếp
c, chứng minh AE là tiếp tuyến của đường tròn ( o ; r)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ giải lại 2 câu a và b.
a) Vì (O) và (O') giao nhau tại A và B nên AB vuông góc OO'. Do đó ^BO'O = 1/2.^AO'B = ^BDA
Tương tự ^BOO' = ^BCA. Từ đó \(\Delta\)BOO' ~ \(\Delta\)BCD (g.g) (đpcm).
b) Ta thấy: ^KDA = ^ABD (=1/2.Sđ(AD nhỏ của (O')). Tương tự ^KCA= ^ABC
Nên ta có: ^KCB + ^KDB = ^BCD + ^BDC + ^KDA + ^KCA = ^BDC + ^BCD + ^ABD + ^ABC = 1800
Suy ra tứ giác BCKD nội tiếp (đpcm).
c) Vì IE // DK nên ^DIE = ^KDA (So le trong) = ^ABD (cmt) => ^DIE = ^ABE => Tứ giác AIEB nội tiếp
=> ^BAE = ^BIE = ^BKD (Vì IE // KD) = ^BCD (Tứ giác BCKD nt) = 1/2.Sđ(AB nhỏ của (O)
Do vậy AE là tiếp tuyến của (O) (đpcm).
a: TH1: A và CD nằm cùng một phía so với đường O'O
góc ABC=góc AEC=góc ICD
góc DBC=gsoc AED=góc IDC
=>góc DBA+góc DIC=góc ABC+góc DBC+góc DIC
=góc ICD+góc IDC+góc DIC=180 độ
=>BCID nội tiếp
TH2: A và CD nằm khác phía so với O'O
ABCE nội tiếp (O)
=>góc BCE+góc BAE=180 độ
=>góc BCE=góc BAF
Tương tự, ta được: góc BAF=góc BDI
=>góc BCE=góc BDI
=>góc BCI+góc BDI=180 độ
=>BCID nội tiếp
b: góc ICD=góc CEA=góc DCA
=>góc ICD=góc DCA
Chứng minh tương tự, ta được: góc IDC=góc CDA
Xét ΔICD và ΔACD có
góc ICD=góc DCA
CD chung
góc IDC=góc CDA
=>ΔICD=ΔACD
=>DI=DA và CI=CA
=>CD là trung trực của AI
c:
CD vuông góc AI
=>AI vuông góc MN
Gọi K là giao của AB và CD
Chứng minh được CK^2=KA*KB=KD^2
=>KC=KC
CD//MN
=>KC/AN=KD/AM=KB/AB
=>AN=AM
=>ΔIMN cân tại I
=>IA là phân giác của góc MIN
a: O là trung điểm của AB
=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)
ΔOBD vuông tại B
=>\(OD^2=OB^2+BD^2\)
=>\(OD^2=4,8^2+6,4^2=64\)
=>OD=8(cm)
Xét ΔDON vuông tại O có OB là đường cao
nên \(OB^2=BN\cdot BD\)
=>\(BN\cdot6,4=4,8^2\)
=>BN=3,6(cm)
DN=DB+BN
=3,6+6,4
=10(cm)
Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)
=>\(ON^2+8^2=10^2\)
=>\(ON^2=36\)
=>ON=6(cm)
b: Xét (O) có
DM,DB là tiếp tuyến
Do đó; OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)
=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)
=>OC là phân giác của góc MOA
Xét ΔCAO và ΔCMO có
OA=OM
\(\widehat{COA}=\widehat{COM}\)
OC chung
Do đó: ΔCAO=ΔCMO
=>\(\widehat{CAO}=\widehat{CMO}=90^0\)
=>AC\(\perp\)AB
mà BD\(\perp\)AB
nên BD//AC
Xét ΔOAC vuông tại A và ΔOBN vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BON}\)
Do đó: ΔOAC=ΔOBN
=>OC=ON
=>O là trung điểm của CN
Xét ΔDCN có
DO là đường cao
DO là đường trung tuyến
Do đó;ΔDCN cân tại D
=>DC=DN
c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)
nên CA là tiếp tuyến của (O)