Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét đường tròn \(\left(O\right)\) có \(MD\) và \(BD\) là tiếp tuyến với \(B;D\) , là tiếp điểm
\(\Rightarrow MD=DB\) ( tính chất tiếp tuyến )
xét tam giác \(MOD\) và tam giác \(BOD\) , có :
\(MD=BD\) ( cmt )
\(MO=OB\) ( cùng là bán kính đường tròn )
\(OD\) chung
\(\Rightarrow\Delta MOD=\Delta BOD\Rightarrow\) ∠ \(MDO\) \(=\) ∠ \(BDO\Rightarrow OD\) là phân giác ∠\(MDB\)
xét tam giác \(CDN\) có :
\(OD\) là đường cao ( do \(OD\perp CN\) )
\(OD\) là phân giác ∠ \(MDB\)
suy ra : tam giác \(CDN\) cân tại \(D\) , suy ra \(CD=ND\) ( đpcm )
\(\text{a) Xét tứ giác ADMO có:}\)
∠DMO =90o (do M là tiếp tuyến của (O))
∠DAO =90o (do AD là tiếp tuyến của (O))
=> ∠DMO + ∠DAO = 180o
=> Tứ giác ADMO là tứ giác nội tiếp.
\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)
=>(AOD = \(\frac{1}{2}\)∠AOM
Mặt khác ta có (ABM là góc nội tiếp chắn cung AM
=> ∠ABM = \(\frac{1}{2}\)∠AOM
=> ∠AOD = ∠ABM
Mà 2 góc này ở vị trí đồng vị
=> OD // BM
Xét tam giác ABN có:
OM// BM; O là trung điểm của AB
=> D là trung điểm của AN
c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB
=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)
ΔOBM cân tại O => ∠OMB = ∠OBM (2)
Cộng (1) và (2) vế với vế, ta được:
∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o
=>OB ⊥ BE
Vậy BE là tiếp tuyến của (O).
d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)
Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến
=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB
Ta có:
\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)
=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN
Tam giác NAB vuông tại A có: IA = IN = IB
=> IA là trung tuyến của tam giác NAB
Xét ΔBNA có:
IA và BD là trung tuyến; IA ∩ BD = {J}
=> J là trọng tâm của tam giác BNA
Xét tam giác AIO có:
\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)
=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.
Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d
Do d// OI (cùng vuông góc AB) nên ta có:
\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)
\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)
AI là trung tuyến của tam giác NAB
=> J' là trọng tâm tam giác NAB
Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.
HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+DM=CD
nên CD=AC+BD
a: O là trung điểm của AB
=>\(OA=OB=\dfrac{AB}{2}=4,8\left(cm\right)\)
ΔOBD vuông tại B
=>\(OD^2=OB^2+BD^2\)
=>\(OD^2=4,8^2+6,4^2=64\)
=>OD=8(cm)
Xét ΔDON vuông tại O có OB là đường cao
nên \(OB^2=BN\cdot BD\)
=>\(BN\cdot6,4=4,8^2\)
=>BN=3,6(cm)
DN=DB+BN
=3,6+6,4
=10(cm)
Xét ΔODN vuông tại O có \(DN^2=OD^2+ON^2\)
=>\(ON^2+8^2=10^2\)
=>\(ON^2=36\)
=>ON=6(cm)
b: Xét (O) có
DM,DB là tiếp tuyến
Do đó; OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
\(\widehat{MOB}+\widehat{MOA}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOD}+\widehat{MOA}=2\cdot90^0\)
=>\(\widehat{MOA}=2\cdot90^0-2\cdot\widehat{MOD}=2\left(90^0-\widehat{MOD}\right)=2\cdot\widehat{COM}\)
=>OC là phân giác của góc MOA
Xét ΔCAO và ΔCMO có
OA=OM
\(\widehat{COA}=\widehat{COM}\)
OC chung
Do đó: ΔCAO=ΔCMO
=>\(\widehat{CAO}=\widehat{CMO}=90^0\)
=>AC\(\perp\)AB
mà BD\(\perp\)AB
nên BD//AC
Xét ΔOAC vuông tại A và ΔOBN vuông tại B có
OA=OB
\(\widehat{AOC}=\widehat{BON}\)
Do đó: ΔOAC=ΔOBN
=>OC=ON
=>O là trung điểm của CN
Xét ΔDCN có
DO là đường cao
DO là đường trung tuyến
Do đó;ΔDCN cân tại D
=>DC=DN
c: Vì \(\widehat{CAO}=90^0\) và OA là bán kính của (O)
nên CA là tiếp tuyến của (O)