Tìm n sao cho:
(2n + 29) là bội của (2n + 1)
(6n + 10) là bội của (2n + 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
a) 2n + 3 là bội của n - 2
2n - 3 chia hết cho n -2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư( 7 )
=> n = 3 ; 1 ; - 5 ; 9
mà n là số tự nhiên => n = 1 ; 3 ; 9
CHÚC HOK TỐT !
a ) 2n + 3 là bội của n - 2
=> 2n + 3 \(⋮\)n - 2
=> 2n - 4 + 7 \(⋮\)n - 2
=> 2 . ( n - 2 ) + 7 \(⋮\)n - 2 mà 2 . ( n - 2 ) \(⋮\)n - 2 => 7 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 5 ; 1 ; 3 ; 9 } mà n \(\in\)N => n \(\in\){ 1 ; 3 ; 9 }
Vậy n \(\in\){ 1 ; 3 ; 9 }
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
Giải:2n-1 là bội của n+3
=>2n-1\(⋮\)n+3
=>2(n+3)-7
Mà 2(n+3)\(⋮\)n+3 và 2n-1\(⋮\)n+3 nên
=>7\(⋮\)n+3
=>n+3\(\in\)Ư(7)={1;7}
=>n\(\in\){-2;5}
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
a) 6 là bội của n+1
=> 6 ⋮ n+1
=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}
Lập bảng tìm n :
n+1 | 1 | 2 | 3 | -1 | -2 | -3 |
n | 0 | 1 | 2 | -2 | -3 | -4 |
Vậy n thuộc { 0;1;2;-2;-3;-4}
b) Xét n+1 là bội của 6
=> n+1 thuộc { 0; 6; 12; 18; ... }
=> n thuộc { -1; 5; 11; 17; .... }
Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^
c) 2n+3 là bội của n+1
=> 2n+3 ⋮ n+1
=> 2(n+1) + 1 ⋮ n+1
ta có 2(n+1) ⋮ n+1
=> 1 ⋮ n+1
=> n+1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 0; -2 }
d) tương tự
a) 6 là bội của n+1 => n+1 là ước của 6
Ư(6)= 1;2;3;6. Ta có bảng: ( bạn tự vẽ bảng nhé )
n+1 1 2 3 6
n 0 1 2 5
Vậy n = 0; 1; 2; 5
b) B(6)= 0;6;12;18;24;30;...... Ta có bảng:
n+1 0 12 18 24 30
n 0 11 17 23 29
Vậy n = 0;5;11;17;23;29;.....
c) ta có bảng:
n 0 1 2 3 4 5 6 7
2n+3 3 5 7 9 11 13 15 17
n+1 1 2 3 4 5 6 7 8
Vậy n = 0.
a: Ta có: \(2n+29⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;7\right\}\)
hay \(n\in\left\{0;3\right\}\)