K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)

\(=m^2-10m+25+4m-24\)

\(=m^2-6m+1=\left(m-3\right)^2-8\)

Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)

\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)

Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)

Ta có: \(x_1x_2=-m+6\)

\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)

\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)

\(\Leftrightarrow6m^2-136m+756=0\)

hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)

b: \(x_1+x_2+x_1x_2-11=0\)

\(\Leftrightarrow m-5-m+6-11=0\)

=>-12=0(vô lý)

NV
10 tháng 5 2021

Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-4m\left(m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow0< m\le\dfrac{4}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=\dfrac{m-1}{m}=1-\dfrac{1}{m}\end{matrix}\right.\)

\(A=x_1^2+x_2^2-6x_1x_2=\left(x_1+x_2\right)^2-8x_1x_2\)

\(A=1-8\left(1-\dfrac{1}{m}\right)=\dfrac{8}{m}-7\)

Do \(0< m\le\dfrac{4}{3}\Rightarrow\dfrac{8}{m}\ge\dfrac{8}{\dfrac{4}{3}}=6\)

\(\Rightarrow A\ge6-7=-1\)

\(A_{min}=-1\) khi \(m=\dfrac{4}{3}\)

11 tháng 8 2019

אני לא יודע איך

19 tháng 3 2018

a) có 1 nghiệm \(\left[{}\begin{matrix}m+1=0;m=-1\\\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)=0< =>4=0;vn\end{matrix}\right.\)

b) từ (a) luôn có 2 nghiệm mọi m khác -1

\(\left[{}\begin{matrix}x_1=\dfrac{m-3}{m+1}\\x_2=\dfrac{m+1}{m+1}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_1.x_2>0\Leftrightarrow\dfrac{m-3}{m+1}>0;m\in(-vc;-1)U\left(3;vc\right)\\x_1=2x_2\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-3}{m+1}=2;-m-5=0;m=-5\\\dfrac{m-3}{m+1}=\dfrac{1}{2};m-7=0;m=7\end{matrix}\right.\end{matrix}\right.\)

kết hợp ; m =-5 ; 7

x1+x2=3; x1*x2=-7

B=(x1+x2)^2-2x1x2

=9-2*(-7)=23

D=(x1+x2)^3-3x1x2(x1+x2)

=3^3-3*(-7)*3

=27+63=90

F=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=10*(-7)+69

=-1

\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)

1 tháng 5 2023

mong bạn có thể giải thích chi tiết hơn

18 tháng 3 2017

( a = 1; b = m; c = m - 1 )

  \(\Delta=b^2-4ac\)

     \(=m^2-4.1.\left(m-1\right)\)

     \(=m^2-4m+4\)

     \(=\left(m-2\right)^2\ge0\forall m\)

Pt luôn có 2 nghiệm với mọi m

Theo Vi-et ta có:

\(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=-m\\P=x_1x_2=m-1\end{cases}}\)

Ta có: \(P=x^2_1+x_2^2-6\left(x_1x_2\right)\)

    \(\Leftrightarrow P=S^2-2P-6P\)

    \(\Leftrightarrow P=m^2-2\left(m-1\right)-6\left(m-1\right)\)

    \(\Leftrightarrow m^2-2m+2-6m+6\)

    \(\Leftrightarrow m^2-8m+8\)

    \(\Leftrightarrow m^2+8m+4^2-4^2+8\)

     \(\Leftrightarrow\left(m+4\right)^2-8\ge-8\)

Vậy \(MinP=-8\Leftrightarrow\left(m+4\right)^2=0\)

                                   \(\Leftrightarrow m=-4\)

NV
22 tháng 6 2020

Đề đúng là \(m^3-3m\) chứ bạn?

\(\Delta'=m^2-m^3-3m\ge0\)

\(\Leftrightarrow m\left(-m^2+m-3\right)\ge0\)

\(\Rightarrow m\le0\) (do \(-m^2+m-3=-\left(m-\frac{1}{2}\right)^2-\frac{11}{4}< 0;\forall m\))

b/ \(x_1^2+x_2^2\ge8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge8\)

\(\Leftrightarrow4m^2-2m^3+6m\ge8\)

\(\Leftrightarrow m^3-2m^2-3m+4\le0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2-m-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}m\le\frac{1-\sqrt{17}}{2}\\1\le m\le\frac{1+\sqrt{17}}{2}\end{matrix}\right.\) \(\Rightarrow m\le\frac{1-\sqrt{17}}{2}\)