K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2020

\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)

=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)

=> \(3S-S=3^{224}-1\)

=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên 

Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)

mà \(3^8-1=6560=41.160⋮41\) 

=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)

=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.

5 tháng 5 2020

Thank nha !

😊😊😊😊

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

Ta co: 3+3^3+3^5+...+3^1991 = (3+3^3+3^5)+...+(3^1987+1989+1991) =3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4) =3.91+...+3^1987.91 =(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13 3+3^3+3^5+...+3^1991 =(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991) =3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6) =3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41

2 tháng 1 2020

WHY CHO 3^223 CƠ MÀ

Đề sai nha

S=3+32+33+...+3223

S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)

S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)

S=9840+...+3215.9840

S=9840.(1+...+3215)

S=41.240.(1+...+3215)\(⋮\)41

Vậy S\(⋮\)41

Chúc bn học tốt

24 tháng 12 2020

Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak

7 tháng 1 2020

Đây là đề thi toán tỉnh Bắc Giang nhỉ?

Bạn vào câu hỏi tương tự đi, có đó

7 tháng 1 2020

Vào đây nè : olm.vn/hoi-dap/detail/239306998482.html

Ta có :

 \(S=4+3^2+3^3+.....+3^{223}\)

\(=1+3+3^2+3^3+....+3^{223}\)

\(\Rightarrow3S=3+3^2+3^3+3^{224}\)

\(\Leftrightarrow S=\frac{3^{224}-1}{2}=\frac{\left(3\right)^{4^{56}}-1}{2}\)

Vì  \(3^4\equiv-1\left(mod41\right)\)

\(\Rightarrow3^{4^{56}}\equiv1\left(mod41\right)\)

\(\Leftrightarrow3^{4^{56}}-1\equiv0\left(mod41\right)\)

\(\Leftrightarrow\frac{3^{4^{56}}-1}{2}\equiv0\left(mod41\right)\)

Hay \(S⋮41\) ( đpcm )

29 tháng 6 2018

a) Ta có:

\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)

                              \(=...5⋮5\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\)

Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)

b) Ta có:

\(4^{2010}+2^{2014}=...6+...4\)

                              \(=...10⋮10\)

\(\Rightarrow4^{2010}+2^{2014}⋮10\)

Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)

7 tháng 10 2016

Câu hỏi của Nguyễn Nhật Loan - Toán lớp 6 - Học toán với OnlineMath

7 tháng 10 2016

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

9 tháng 8 2014

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +22 + 23) + (2+ 25  + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 33 + 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 32 + 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 337) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34  + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 

 

20 tháng 12 2014

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 337) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 
23 tháng 10 2016

a)

C=1+3+32+33+34+35+...+311

C=(1+3+32)+(33+34+35)+...+(39+310+311)

C=13+(33.1+33.3+33.32)+...+(39.1+39.3+39.32)

C=13+33.(1+3+32)+...+39.(1+3+32)

C=13.1+33.13+...+39.13

C=13.(1+33+35+37+39)\(⋮\)3

\(\Rightarrow\)C\(⋮\)3

Câu b ghép 4 số lại với nhau rồi làm như trên