K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai nha

S=3+32+33+...+3223

S=(3+32+33+34+35+36+37+38)+.....+(3216+3217+3218+3219+3320+3321+3322+3323)

S=(3+32+33+34+35+36+37+38)+....+3215.(3+32+33+34+35+36+37+38)

S=9840+...+3215.9840

S=9840.(1+...+3215)

S=41.240.(1+...+3215)\(⋮\)41

Vậy S\(⋮\)41

Chúc bn học tốt

24 tháng 12 2020

Nguyễn Trí Nghĩa (Team ngọc rồng) đề bài không có sai đâu bạn đề bài đúng đấy cô giáo mk cx cho bài này mak

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)

S = (-20) + 34 . (-20) +.... + 396 . (-20)

S = (-20) . (1 + 34 +...+ 396

\(\Rightarrow\)\(⋮\) 20 

(Ko bt có đúng ko)

*KO CHÉP MẠNG*

 

13 tháng 3 2021

qua đúng

 

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

22 tháng 10 2023

\(B=3^1+3^2+3^3+...+3^{300}\\=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{299}+3^{300})\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+...+3^{299}\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{299}\cdot4\\=4\cdot(3+3^3+3^5+...+3^{299})\)

Vì \(4\cdot(3+3^3+3^5+...+3^{299})\vdots2\)

nên \(B\vdots2\)

22 tháng 10 2023

B=(3+32)+(33+34)+...+(3299+3300)

B=3(1+3)+33(1+3)+...+3299(1+3)

B=3.4+33.4+...+3299.4

B=4(3+33+...+3299) chia hết cho 2 vì 4 chia hết cho 2

vậy B chia hết cho 2

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

29 tháng 10 2021

\(A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13\)

\(=13\left(1+3^3+...+3^{96}\right)⋮13\)

29 tháng 10 2021

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ A=13\left(1+3^3+...+3^{96}\right)⋮13\)

TH
Thầy Hùng Olm
Manager VIP
22 tháng 12 2022

\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(S=4x\left(1+3^2+...+3^8\right)\)

Vì 4 chia hết cho 4 nên S chia hết cho 4

1 tháng 11 2021

\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)