Cho đường tròn (O) đường kính 10cm và đường thẳng d. Gọi H là hình chiếu vuông góc của O trên đường thẳng d. Biết OH = 8cm. Xác định vị trí tương đối của đường thẳng d và đường tròn (O).
A. Đường thẳng d và đường tròn (O) tiếp xúc nhau.
B. Đường thẳng d và đường tròn (O) cắt nhau.
C. Đường thẳng d và đường tròn (O) có điểm chung.
D. Đường thẳng d và đường tròn(O) không có điểm chung.
a) Kẻ OH ⊥⊥ d
=> OH là khoảng cách từ d tới tâm đường tròn (O)
mà OH < R (3 < 5)
=> Đường thẳng d cắt đường tròn (O)
b) Xét ΔΔOAH vuông tại H có:
OH2+AH2=OA2OH2+AH2=OA2 (ĐL Pi-ta-go)
=> AH=OA2−OH2−−−−−−−−−−√=52−32−−−−−−√=4(cm)AH=OA2−OH2=52−32=4(cm)
Xét (O): AB là dây, OH ⊥⊥ AB
=> H trung điểm AB (quan hệ ⊥⊥ giữa đường kính và dây cung)
=> AB = 2AH = 8(cm)
c) Xét ΔΔABC có: O, H trung điểm AC, AB
=> OH là đường trung bình ΔΔABC
=> OH // BC mà OH ⊥⊥ AH
=> BC ⊥⊥ AH => ΔΔABC vuông tại B
=> AB2 + BC2 = AC2
=> BC=102−82−−−−−−−√=6(cm)BC=102−82=6(cm)
Xét ΔΔABC vuông tại B
có: sinC=ABAC=810=45⇒Cˆ=53o7′sinC=ABAC=810=45⇒C^=53o7′
=> Aˆ=36o52′A^=36o52′
d) Xét ΔΔACM vuông tại C: CB ⊥⊥ AM
có: AC2=AB⋅AMAC2=AB⋅AM (HTL tam giác vuông)
=> AM=AC2AB=1028=12,5(cm)AM=AC2AB=1028=12,5(cm)
lại có: AB + BM = AM ; AB = 8(cm)
=> BM = 4,5(cm)