K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Câu a là a=2 b=5

Còn câu B mình không biết nha

Chúc cấc bạn học giỏi

20 tháng 1 2017

a,Đặt \(\overline{1980ab}=k^2\)\(\left(k\in Z\right)\)

Vì ab là số có 2 chữ số \(\Rightarrow198000\le k^2\le198099\)

\(\Rightarrow\sqrt{198000}\le k\le\sqrt{198099}\)

\(\Rightarrow444,971...\le k\le445,08...\)

\(\Rightarrow k=445\)

\(\Rightarrow\overline{1980ab}=k^2=445^2=198025\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=5\end{cases}}\)

Vậy số cần tìm là \(198025\)

b, Đặt \(\overline{1978cd}=t^2\) \(\left(t\in Z\right)\)

Vì cd là số có 2 chữ số \(\Rightarrow197800\le t^2\le197899\)

\(\Rightarrow\sqrt{197800}\le t\le\sqrt{197899}\)

\(\Rightarrow444,74...\le t\le445\)

\(\Rightarrow t=445\)

Mà \(t^2=445^2=198025\ne\overline{1978cd}\)

Vậy không có giá trị nào của c,d thỏa mãn \(\overline{1978cd}\)là số chính phương

14 tháng 3 2019

xét A=ab+ba=10 a+b+10b+a=11(a+b) =>A chia hết cho  11 mà 11 là số nguyên tố A là so chinh phuong=> A chia hết 11^2

=>11(a+b) chia hết 11^2=> a+b chia hết 11 mà a,b là chữ số a,b khác 0=> 

TA có bảng sau:

a23456789
b98765432
14 tháng 3 2019

thank you very much . cảm ơn bạn nha

20 tháng 10 2020

Ta có ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b)

Để ab + ba là số chính phương

=> 11(a + b) là số chính phương

=> (a + b)\(⋮\)112k + 1 (k là số tự nhiên) (1)

Vì 2 < a + b < 18 (Vì 0 < a ; b < 10) (2)

Từ (1)(2) => a + b = 11

Lại có 11 = 5 + 6 = 7 + 4 + 8 + 3 = 9 + 2

=> Các cặp (a ; b) thỏa mãn là (5;6) ; (6;5) ; (7;4) ; (4;7) ; (8;3) ; (3;8) ; (9 ; 2) ; (2;9)

20 tháng 10 2020

Ta có: \(\overline{ab}+\overline{ba}=a.10+b+b.10+a=11\left(a+b\right)\)

Vì a; b là số tự nhiên có 1 1 chữ số => 0 < a + b < 20 

Để \(\overline{ab}+\overline{ba}=11\left(a+b\right)\)là số chính phương 

<=> a + b = 11.k với k là số chính phương 

=> 0 < 11k < 20 ; k là số chính phương 

=> k = 1 => a + b = 11

Không mất tính tổng quát: g/s: a < b 

+) Với a = 1 => b = 10 loại 

+) Với a = 2 => b = 9 

+) Với a = 3 => b = 8 

+) Với a = 4 => b = 7 

+) Với a = 5 => b = 6 

Vây  a = 2; b = 9 hoặc a = 3; b = 8 hoặc a = 4; b = 7 hoặc a = 5; b = 6 hoặc các hoán vị

8 tháng 7 2015

Tìm các số có 4 chữ số sao mỗi số vừa là số chính phương vừa là số lập phương

Gọi số chính phương phải tìm là 
abcd
(a, b, c, d ∈ N, 0 ≤ b, c, d ≤ 9, 0 < a ≤ 9)
Ta có: 
abcd
= x^2                             (1)
  = y^3                              (1)
Với x, y ∈N và 31< x < 100; 10≤ y ≤ 21 (2)
Từ (1) ta suy ra y cũng là một số chính phương và từ (2) ta suy ra y = 16
Do đó : 
abcd
= 16^3
= 4096 = 64^2

Vậy số phải tìm là 4096

19 tháng 1 2018

gọi aabb =n^2

có 1000a+100a+10b+b=n^2

1100a+11b=n^2

11(100a=b)=n^2

=> n^2 chia hết cho 11 

vậy n chia hết cho 11

mà 32<n<100(vì n^2 có 4 chữ số nên n có 2 chữ số)

vậy n=33;44;55;66;77;88;99

thử vào thì thấy 88 là hợp lý 

=> n=88  

có 88^2=7744

vậy a=7 và b =4 để aabb là số chính phương

cho mình 3 điểm thành tích nha 

29 tháng 6 2019

1)

đặt 3 chữ số còn lại là a.

Ta có tổng các chữ số của số cần tìm là 5+7+3a⋮3

Vì số này là số chính phương nên phải chia hết cho 9.

xét các trường hợp 0≤a≤9(a≠5;7)=>a ϵ(2;8)

Vì số chính phương có tận cùng là 0;1;4;5;6;9 suy ra số cần tìm phải có tận cùng là 5, cho nên hai chứ số tận cùng nhất thiết phải là 25.

Từ đây suy ra a=2. 

Vậy số đó là: 27225 ( t/m đề bài 1 c/s 5, 1 c/s 7 và 3 c/s 2)

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

$\overline{aabb}=1100a+11b=11(100a+b)=11.\overline{a0b}$

Để $\overline{aabb}$ là scp thì $\overline{a0b}=11k^2$ với $k$ tự nhiên.

Mà $\overline{a0b}$ là số có 3 chữ số nên:

$100\leq 11k^2\leq 999$

$\Rightarrow 3,05\leq k\leq 9,5$

$\Rightarrow k\in \left\{4; 5; 6; 7; 8; 9\right\}$

Thử lại ta thấy $k=8$ là TH duy nhất thỏa mãn.

$\overline{a0b}=11.8^2=704$

$\Rightarrow a=7; b=4$