Tìm các chữ số a,b sao cho
ab + ba là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a là a=2 b=5
Còn câu B mình không biết nha
Chúc cấc bạn học giỏi
a,Đặt \(\overline{1980ab}=k^2\)\(\left(k\in Z\right)\)
Vì ab là số có 2 chữ số \(\Rightarrow198000\le k^2\le198099\)
\(\Rightarrow\sqrt{198000}\le k\le\sqrt{198099}\)
\(\Rightarrow444,971...\le k\le445,08...\)
\(\Rightarrow k=445\)
\(\Rightarrow\overline{1980ab}=k^2=445^2=198025\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=5\end{cases}}\)
Vậy số cần tìm là \(198025\)
b, Đặt \(\overline{1978cd}=t^2\) \(\left(t\in Z\right)\)
Vì cd là số có 2 chữ số \(\Rightarrow197800\le t^2\le197899\)
\(\Rightarrow\sqrt{197800}\le t\le\sqrt{197899}\)
\(\Rightarrow444,74...\le t\le445\)
\(\Rightarrow t=445\)
Mà \(t^2=445^2=198025\ne\overline{1978cd}\)
Vậy không có giá trị nào của c,d thỏa mãn \(\overline{1978cd}\)là số chính phương
xét A=ab+ba=10 a+b+10b+a=11(a+b) =>A chia hết cho 11 mà 11 là số nguyên tố A là so chinh phuong=> A chia hết 11^2
=>11(a+b) chia hết 11^2=> a+b chia hết 11 mà a,b là chữ số a,b khác 0=>
TA có bảng sau:
a | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
b | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 |
Ta có ab + ba = 10a + b + 10b + a = 11a + 11b = 11(a + b)
Để ab + ba là số chính phương
=> 11(a + b) là số chính phương
=> (a + b)\(⋮\)112k + 1 (k là số tự nhiên) (1)
Vì 2 < a + b < 18 (Vì 0 < a ; b < 10) (2)
Từ (1)(2) => a + b = 11
Lại có 11 = 5 + 6 = 7 + 4 + 8 + 3 = 9 + 2
=> Các cặp (a ; b) thỏa mãn là (5;6) ; (6;5) ; (7;4) ; (4;7) ; (8;3) ; (3;8) ; (9 ; 2) ; (2;9)
Ta có: \(\overline{ab}+\overline{ba}=a.10+b+b.10+a=11\left(a+b\right)\)
Vì a; b là số tự nhiên có 1 1 chữ số => 0 < a + b < 20
Để \(\overline{ab}+\overline{ba}=11\left(a+b\right)\)là số chính phương
<=> a + b = 11.k với k là số chính phương
=> 0 < 11k < 20 ; k là số chính phương
=> k = 1 => a + b = 11
Không mất tính tổng quát: g/s: a < b
+) Với a = 1 => b = 10 loại
+) Với a = 2 => b = 9
+) Với a = 3 => b = 8
+) Với a = 4 => b = 7
+) Với a = 5 => b = 6
Vây a = 2; b = 9 hoặc a = 3; b = 8 hoặc a = 4; b = 7 hoặc a = 5; b = 6 hoặc các hoán vị
Tìm các số có 4 chữ số sao mỗi số vừa là số chính phương vừa là số lập phương
Gọi số chính phương phải tìm là
abcd
(a, b, c, d ∈ N, 0 ≤ b, c, d ≤ 9, 0 < a ≤ 9)
Ta có:
abcd
= x^2 (1)
= y^3 (1)
Với x, y ∈N và 31< x < 100; 10≤ y ≤ 21 (2)
Từ (1) ta suy ra y cũng là một số chính phương và từ (2) ta suy ra y = 16
Do đó :
abcd
= 16^3
= 4096 = 64^2
Vậy số phải tìm là 4096
gọi aabb =n^2
có 1000a+100a+10b+b=n^2
1100a+11b=n^2
11(100a=b)=n^2
=> n^2 chia hết cho 11
vậy n chia hết cho 11
mà 32<n<100(vì n^2 có 4 chữ số nên n có 2 chữ số)
vậy n=33;44;55;66;77;88;99
thử vào thì thấy 88 là hợp lý
=> n=88
có 88^2=7744
vậy a=7 và b =4 để aabb là số chính phương
cho mình 3 điểm thành tích nha
1)
đặt 3 chữ số còn lại là a.
Ta có tổng các chữ số của số cần tìm là 5+7+3a⋮3
Vì số này là số chính phương nên phải chia hết cho 9.
xét các trường hợp 0≤a≤9(a≠5;7)=>a ϵ(2;8)
Vì số chính phương có tận cùng là 0;1;4;5;6;9 suy ra số cần tìm phải có tận cùng là 5, cho nên hai chứ số tận cùng nhất thiết phải là 25.
Từ đây suy ra a=2.
Vậy số đó là: 27225 ( t/m đề bài 1 c/s 5, 1 c/s 7 và 3 c/s 2)
Lời giải:
$\overline{aabb}=1100a+11b=11(100a+b)=11.\overline{a0b}$
Để $\overline{aabb}$ là scp thì $\overline{a0b}=11k^2$ với $k$ tự nhiên.
Mà $\overline{a0b}$ là số có 3 chữ số nên:
$100\leq 11k^2\leq 999$
$\Rightarrow 3,05\leq k\leq 9,5$
$\Rightarrow k\in \left\{4; 5; 6; 7; 8; 9\right\}$
Thử lại ta thấy $k=8$ là TH duy nhất thỏa mãn.
$\overline{a0b}=11.8^2=704$
$\Rightarrow a=7; b=4$