K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

Nguyễn Khắc Vinh loe vừa thui ông mới học lớp 6 mà

21 tháng 12 2015

\(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+...+\left(\frac{3}{4}\right)^{2010}\)

\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-...-\left(\frac{3}{4}\right)^{2011}\)

\(\frac{3}{4}A-1=-\left[1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+...+\left(\frac{3}{4}\right)^{2010}\right]-\left(\frac{3}{4}\right)^{2011}\)

\(\frac{3}{4}A-1=A-\left(\frac{3}{4}\right)^{2011}\)

\(\frac{3}{4}A-A=-\left(\frac{3}{4}\right)^{2011}+1\)

\(-\frac{1}{4}A=1-\left(\frac{3}{4}\right)^{2011}\)

\(A=\frac{1-\left(\frac{3}{4}\right)^{2011}}{-\frac{1}{4}}=1:-\frac{1}{4}-\left(\frac{3}{4}\right)^{2011}:\left(-\frac{1}{4}\right)=-4+3\cdot\left(\frac{3}{4}\right)^{2010}\)

=>A không phải là số nguyên

21 tháng 12 2019

\(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^4-...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)

\(\Rightarrow\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^2+-\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{2010}-\left(\frac{3}{4}\right)^{2011}\)

\(\Rightarrow\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^2+-\left(\frac{3}{4}\right)^4+...+\left(\frac{3}{4}\right)^{20010}-\left(\frac{3}{4}\right)^{2011}\)

\(+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^4-...-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)

\(\Rightarrow\frac{7}{4}A=1-\left(\frac{3}{4}\right)^{2011}\)

\(\Rightarrow A=\frac{4}{7}-\frac{4}{7}.\left(\frac{3}{4}\right)^{2011}\)

\(\Rightarrow A=\frac{4}{7}-\frac{3^{2011}}{7.4^{2010}}\)

Vậy A không là số tự nhiên

21 tháng 12 2019

Số nguyên chứ không pk stn nhé, nhầm

14 tháng 12 2015

tich di mk giai cho

 

8 tháng 12 2015

\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+\left(\frac{3}{4}\right)^5-....-\left(\frac{3}{4}\right)^{2010}\)

\(A+\frac{3}{4}A=1-\left(\frac{3}{4}\right)^{2010}\)

\(\frac{7}{4}A=1-\left(\frac{3}{4}\right)^{2010}\)

\(A=\frac{4}{7}\left(1-\left(\frac{3}{4}\right)^{2010}\right)khong\:làsốnguyên\)

 

8 tháng 12 2015

\(A+\frac{3}{4}A=1+\left(\frac{3}{4}\right)^{2011}\)

\(\Leftrightarrow\frac{7}{4}A=1+\left(\frac{3}{4}\right)^{2011}\)

\(\Leftrightarrow A=\left(1+\left(\frac{3}{4}\right)^{2011}\right):\frac{7}{4}=\frac{4}{7}\left(1+\left(\frac{3}{4}\right)^{2011}\right)\)

Vì \(1<1+\left(\frac{3}{4}\right)^{2011}<1+\frac{3}{4}=\frac{7}{4}\)

=> 4/7 < A < 4/7 .7/4 =1  =>  A không là số nguyên