1 .
Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O), các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh rằng tứ giác CDHE, BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC = ME.MF
c) Đường thẳng qua B song song với AC cắt AM, AH ần lượt tại I,K . Chứng minh HI = HK
2
Cho các đa thức P(x)= x^3+ax^2+bx+c;Q(x)=x^2+2016x+2017 thỏa mãn P(x) =0 có 3 nghiệm phân biệt và P(Q(x))=0 vô nghiệm
Chứng minh P(2017)>10086
+) Ta có: P(x) = 0 có 3 nghiệm phân biệt
=> Gọi 3 nghiệm đó là m; n ; p.
=> P(x) = ( x - m ) ( x - p ) (x - n)
=> P(Q(x)) = ( x^2 + 2016x + 2017 -m )( x^2 + 2016x + 2017 -n )( x^2 + 2016x + 2017 - p )
Vì P(Q(x)) =0 vô nghiệm nên: x^2 + 2016x + 2017 - m = 0 ;x^2 + 2016x + 2017 - m = 0; x^2 + 2016x + 2017 - m = 0 đều vô nghiệm
=> \(\Delta_m=1008^2-\left(2017-m\right)< 0\); \(\Delta_n=1008^2-\left(2017-n\right)< 0\); \(\Delta_p=1008^2-\left(2017-p\right)< 0\)
=> \(2017-m>1008^2;2017-n>1008^2;2017-p>1008^2\)
=> P(2017) = ( 2017 - m) (2017 -n ) (2017 - p) > \(1008^2.1008^2.1008^2=1008^6\)
Vậy ta có điều phải chứng minh.