1.(x+1).(2y-5)=143
tìm x;y?
2.tìm số tự nhiên n biết
n-13 chia hết cho n-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{2y+3z+5}{1+x}+1+\dfrac{3z+x+5}{2y+1}+1+\dfrac{x+2y+5}{1+3z}+1-3\)
\(VT=\dfrac{x+2y+3z+6}{1+x}+\dfrac{x+2y+3z+6}{1+2y}+\dfrac{x+2y+3z+6}{1+3z}-3\)
\(VT=24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)-3\ge\dfrac{24.9}{1+x+1+2y+1+3z}-3=\dfrac{216}{21}-3=\dfrac{51}{7}\)
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\Rightarrow a+b+c=18\)
Có: BDT
\(\Leftrightarrow\sum_{cyc}\left(\frac{b+c+5}{a+1}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{a+b+c-a+5}{a+1}\right)\ge\frac{51}{7}\)(1)
Đặt tiếp tục: \(\left\{{}\begin{matrix}m=a+1\\n=b+1\\p=c+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sum_{cyc}\left(\frac{24-m}{m}\right)\ge\frac{51}{7}\)
\(\Leftrightarrow\sum_{cyc}\left(\frac{24}{m}-1\right)\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge21\cdot\frac{3}{7}=9\)
\(\left(\frac{m}{n}-2+\frac{n}{m}\right)+\left(\frac{p}{m}-2+\frac{m}{p}\right)+\left(\frac{n}{p}-2+\frac{p}{n}\right)\ge0\)
\(\Leftrightarrow\frac{\left(m-n\right)^2}{mn}+\frac{\left(p-m\right)^2}{pm}+\frac{\left(n-p\right)^2}{pn}\ge0\)(đúng)
Đặt: \(\left\{{}\begin{matrix}x=a\\2y=b\\3z=c\end{matrix}\right.\)
BĐT
\(\Leftrightarrow\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{a+b+c-a+5}{a+1}+\frac{a+c+b-b+5}{b+1}+\frac{a+b+c-c+5}{c+1}\ge\frac{51}{7}\)
\(\Leftrightarrow\frac{24-\left(a+1\right)}{a+1}+\frac{24-\left(b+1\right)}{b+1}+\frac{24-\left(c+1\right)}{c+1}\ge\frac{51}{7}\)(1)
Đặt tiếp: \(\left\{{}\begin{matrix}a+1=m\\b+1=n\\c+1=p\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=m-1\\b=n-1\\c=p-1\end{matrix}\right.\)
(1)\(\Leftrightarrow\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{51}{7}\)
\(\Leftrightarrow24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{72}{7}\)
\(\Leftrightarrow\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\ge\frac{3}{7}\)
\(\Leftrightarrow\left(m+n+p\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\ge\frac{3}{7}\left(m+n+p\right)\)( do m+n+p>0)
\(\Leftrightarrow3+\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{m}{p}+\frac{p}{m}\ge\frac{3}{7}\left[\left(a+b+c\right)+3\right]\)
\(\Leftrightarrow\frac{m}{n}+\frac{n}{m}+\frac{p}{n}+\frac{n}{p}+\frac{p}{m}+\frac{m}{p}-6\ge0\)
Tới đây chắc bn làm đc rồi
\(VT+3=\left(x+2y+3z+6\right)\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
= \(24\left(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\right)\)
Áp dụng BĐT cauchy-schwarz:
\(\dfrac{1}{1+x}+\dfrac{1}{1+2y}+\dfrac{1}{1+3z}\ge\dfrac{9}{3+x+2y+3z}=\dfrac{9}{21}\)
\(\Rightarrow VT\ge\dfrac{24.9}{21}-3=\dfrac{51}{7}\)
dấu = xảy ra khi x=2y=3z=6 hay x=6,y=3,z=2
Đặt \(\hept{\begin{cases}a=x\\b=2y\\c=3z\end{cases}}\) => a + b + c = 18
\(P=\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}=\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+b+5}{c+1}\)
Lại đặt \(\hept{\begin{cases}m=a+1\\n=b+1\\p=c+1\end{cases}}\Rightarrow\hept{\begin{cases}a=m-1\\b=n-1\\c=p-1\end{cases}}\)
Ta có : \(\frac{b+c+5}{a+1}+\frac{a+c+5}{b+1}+\frac{a+c+5}{c+1}=\frac{24-m}{m}+\frac{24-n}{n}+\frac{24-p}{p}\)
\(=24\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)-3\ge\frac{24.9}{m+n+p}-3=\frac{24.9}{\left(a+1\right)+\left(b+1\right)+\left(b+1\right)}-3\)
\(=\frac{24.9}{18+3}-3=\frac{51}{7}\)
\(a,\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\\ =x^2.\dfrac{1}{2}x-5x^2-2x.\dfrac{1}{2}x+2x.5+3.\dfrac{1}{2}x-15\\ =\dfrac{1}{2}x^3-5x^2-x^2+10x+\dfrac{3}{2}x-15\\ =\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
\(b,\left(x^2y^2-\dfrac{1}{3}xy+2y\right)\left(x-2y\right)\\ =x^3y-2x^2y^3-\dfrac{1}{3}x^2y+\dfrac{2}{3}xy^2+2xy-4y^2\)
a) \(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
\(=\dfrac{1}{2}x^3-5x^2-x+10x+\dfrac{3}{2}x-15\)
\(=\dfrac{1}{2}x^3-5x^2+\dfrac{48}{5}x-15\)
b) \(\left(x^2y^2-\dfrac{1}{3}xy+2y\right)\left(x-2y\right)\)
\(=x^3y^2-2x^2y^3-\dfrac{1}{3}x^2y+\dfrac{2}{3}xy^2+2xy-4y^2\)
m: (x-y)(x^2-2xy+y^2)
=(x-y)*(x-y)^2
=(x-y)^3
=x^3-3x^2y+3xy^2-y^3
n: =-(x^3+x^2y-x-x^2y-xy^2+y)
=-x^3+x+xy^2-y
o: =-(x^3+x^2y^2-x^2-2xy-2y^3+2y)
=-x^3-x^2y^2+x^2+2xy+2y^3-2y
p: (1/2x-1)(2x-3)
=1/2x*2x-1/2x*3-2x+3
=x^2-3/2x-2x+3
=x^2-7/2x+3
q: (x-1/2y)(x-1/2y)
=(x-1/2y)^2
=x^2-xy+1/4y^2
r: (x^2-2x+3)(1/2x-5)
=1/2x^3-5x^2-x^2+10x+3/2x-15
=1/2x^3-6x^2+11,5x-15
a: |x+1|+(2y-1)^2=3
mà x,y nguyên
nên (2y-1)^2=1 và |x+1|=2
=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)
c: |3x-1|+|2y-5|=3
Th1: |3x-1|=0 và |2y-5|=3
=>3x-1=0 và 2y-5 thuộc {3;-3}
=>y thuộc {4;1}(nhận) và x=1/3(loại)
TH2: |3x-1|=1 và |2y-5|=2
=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}
=>x thuộc {2/3;0} và y thuộc {7/2;3/2}
=>Loại
TH3: |3x-1|=2 và |2y-5|=1
=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}
=>x=3 và y thuộc {3;2}
TH4: |3x-1|=3 và |2y-5|=0
=>3x-1 thuộc {3;-3} và 2y-5=0
=>y=5/2(loại)
d: |2x+1|+|y-5|=0
=>2x+1=0 và y-5=0
=>y=5(nhận) và x=-1/2(loại)
=>Ko có cặp số (x,y) nào thỏa mãn