K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2015

tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại

20 tháng 11 2017

a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C

    *Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)

=>A cách đều A và B

=>AH vuông góc BC

b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2

mk cx đg làm bài này nhg ms chỉ đến đây thôi

26 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm tren đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

31 tháng 12 2021

làm dùm mình câu b đi

a: Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của CB

a: Xét ΔAMB và ΔACM có 

\(\widehat{AMB}=\widehat{ACM}\)

\(\widehat{MAB}\) chung

Do đó: ΔAMB∼ΔACM

Suy ra: AM/AC=AB/AM

hay \(AM^2=AB\cdot AC\)

b: Xét tứ giác AMON có 

\(\widehat{AMO}+\widehat{ANO}=180^0\)

Do đó: AMON là tứ giác nội tiếp(1)

Xét tứ giác AHON có 

\(\widehat{AHO}+\widehat{ANO}=180^0\)

Do đó:AHON là tứ giác nội tiếp(2)

Từ (1) và (2) suy ra A,M,O,N,H cùng thuộc một đường tròn

hay AMHN là tứ giác nội tiếp

b) Xét tứ giác OMEC có

\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối

\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

26 tháng 12 2020

Bạn tự vẽ hình nhé !!!

Ta có: 

\(\left\{{}\begin{matrix}OB=OC\left(=R\right)\\AB=AC\left(tínhchất2tiếptuyếncắtnhau\right)\end{matrix}\right.\)

=> AO là đường trung trực của BC

\(\Rightarrow AO\perp BC\left(1\right)\)

\(\Delta BCD\) nội tiếp (O) đường kính BD

\(\Rightarrow\Delta BCD\) vuông tại C

\(\Rightarrow CD\perp BC\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AO//CD\)

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

21 tháng 1 2024

mà OA⋅OI=OM2=OB2

nên OB2=OH⋅OC

đoạn này không hiểu ạ , góc B đã vuông đâu