Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)
nên MBOC là tứ giác nội tiếp
=>M,B,O,C cùng thuộc một đường tròn
b: Xét (O) có
MB,MC là các tiếp tuyến
Do đó: MB=MC
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM\(\perp\)BC tại I và I là trung điểm của BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD tại C
Ta có: BC\(\perp\)CD
BC\(\perp\)OM
Do đó: CD//OM
c: Xét (O) có
ΔBHD nội tiếp
BD là đường kính
Do đó: ΔBHD vuông tại H
=>BH\(\perp\)HD tại H
=>BH\(\perp\)DM tại H
Xét ΔBDM vuông tại B có BH là đường cao
nên \(MH\cdot MD=MB^2\left(3\right)\)
Xét ΔMBO vuông tại B có BI là đường cao
nên \(MI\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)
=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)
Xét ΔMHI và ΔMOD có
\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)
góc HMI chung
Do đó: ΔMHI đồng dạng với ΔMOD
=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)
mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)
nên \(\widehat{MIH}=\widehat{OHD}\)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
a: ΔOAB cân tại O
mà OM là đường cao
nên OM là phân giác
Xét ΔOAM và ΔOBM có
OA=OB
góc AOM=góc BOM
OM chung
=>ΔOAM=ΔOBM
=>góc OBM=90 độ
=>MB là tiếp tuyến của (O)
b:F ở đâu vậy bạn?
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:
O là trung điểm của EF
a: OH*OA=OB^2=R^2
b: ΔOCD cân tại O
mà OM là trung tuyến
nên OM vuông góc với CD
Xét tứ giác OMBA có
góc OMA=góc OBA=90 độ
nên OMBA là tứ giác nội tiếp
c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có
góc MOA chung
Do đó: ΔOHE đồng dạng với ΔOMA
=>OH/OM=OE/OA
=>OM*OE=OH*OA=R^2=OC^2=OD^2
=>ΔODE vuông tại D
=>DE là tiếp tuyến của (O)
a: góc OMA+góc ONA=180 độ
=>OMAN nội tiếp
b: AM=căn 9a^2-4a^2=a*căn 5
S AMON=2*S AMO=AM*MO=2a^2*căn 5
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
hay OM⊥AB