K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:

   AB2 + AC2 = BC2  <=> 122 + 162 = 400 => BC=20 (BC>0)

Vì AD là đường phân giác góc A => \(\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)    (tính chất đường phân giác trong tam giác)

 <=>\(\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{BC}{7}=\frac{20}{7}\)( tính chất dãy tỉ số bằng nhau )

Khi đó: BD = \(\frac{20}{7}.3\)=\(\frac{60}{7}\) ;   CD = \(\frac{20}{7}.4\)=\(\frac{80}{7}\)

b) Ta có: tam giác ABH ~ tam giác CBA (\(\widehat{BAC}=\widehat{BHA}=90^0\)\(\widehat{B}\)chung)

  =>  \(\frac{AB}{BC}=\frac{BH}{AB}\)<=>  AB2= BH.BC <=>  BH=\(\frac{AB^2}{BC}\)\(\frac{12^2}{20}\)=\(\frac{36}{5}\)=7,2 (cm)

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

BH2 + AH2 = AB2  <=> AH2 + 7,22 = 122  <=> AH = \(\frac{48}{5}=9,6\)(cm)

HD = BD - BH = \(\frac{60}{7}-7,2\)=\(\frac{48}{35}\)(cm)

Áp dụng định lí Py-ta-go vào tam giác AHD vuông tại H, ta có:

AH2 + HD2 = AD2  <=> 9,62 + \(\left(\frac{48}{35}\right)^2\)= AD2  <=>  AD = \(\frac{48\sqrt{2}}{7}\)(cm)