giải bất phương trình
a) x-2(1+x)_> 2x-3(x+1)
b) 3-(x-1)(x+2) -< -x2 +1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{15-2x-1}{5}>\dfrac{x+3}{4}\)
\(\Leftrightarrow\dfrac{-8x+56}{20}>\dfrac{5x+15}{20}\)
=>-8x+56>5x+15
=>-11x>-41
hay x<41/11
b: \(\Leftrightarrow\dfrac{5x+5-6}{6}< \dfrac{4x+4}{6}\)
=>5x-1<4x+4
=>x<5
\(3-\dfrac{2x+1}{5}>x+\dfrac{3}{4}.\)
\(\Leftrightarrow\dfrac{14-2x}{5}-x-\dfrac{3}{4}>0.\)
\(\Leftrightarrow\dfrac{56-8x-20x-15}{20}>0.\)
\(\Rightarrow-28x+41>0.\)
\(\Leftrightarrow-28x>-41.\)
\(\Leftrightarrow x< \dfrac{41}{28}.\)
a) Ta có: (5x-1)(x-3)<0
nên 5x-1 và x-3 trái dấu
Trường hợp 1:
\(\left\{{}\begin{matrix}5x-1>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x< 3\end{matrix}\right.\Leftrightarrow\dfrac{1}{5}< x< 3\)
Trường hợp 2:
\(\left\{{}\begin{matrix}5x-1< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x>3\end{matrix}\right.\Leftrightarrow loại\)
Vậy: S={x|\(\dfrac{1}{5}< x< 3\)}
Bài 1:
a.
$(4x^2+4x+1)-x^2=0$
$\Leftrightarrow (2x+1)^2-x^2=0$
$\Leftrightarrow (2x+1-x)(2x+1+x)=0$
$\Leftrightarrow (x+1)(3x+1)=0$
$\Rightarrow x+1=0$ hoặc $3x+1=0$
$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$
b.
$x^2-2x+1=4$
$\Leftrightarrow (x-1)^2=2^2$
$\Leftrightarrow (x-1)^2-2^2=0$
$\Leftrightarrow (x-1-2)(x-1+2)=0$
$\Leftrightarrow (x-3)(x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-1$
c.
$x^2-5x+6=0$
$\Leftrightarrow (x^2-2x)-(3x-6)=0$
$\Leftrightarrow x(x-2)-3(x-2)=0$
$\Leftrightarrow (x-2)(x-3)=0$
$\Leftrightarrow x-2=0$ hoặc $x-3=0$
$\Leftrightarrow x=2$ hoặc $x=3$
2c.
ĐKXĐ: $x\neq 0$
PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$
$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$
$\Leftrightarrow x=-4$ (tm)
2d.
ĐKXĐ: $x\neq 2$
PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$
$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$
$\Rightarrow 3x-5=3-x$
$\Leftrightarrow 4x=8$
$\Leftrightarrow x=2$ (không tm)
Vậy pt vô nghiệm.
a: \(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)
=>-6x-5=0
=>-6x=5
hay x=-5/6
b: \(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)
=>8x+16=0
hay x=-2
c: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)
=>9x-10=0
hay x=10/9
d: \(\Leftrightarrow10x-15-20x+28=19-2x^2-4x-2\)
\(\Leftrightarrow-10x+13+2x^2+4x-17=0\)
\(\Leftrightarrow2x^2-6x-4=0\)
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
`a)x^2>4`
`<=>sqrtx^2>sqrt4`
`<=>|x|>2`
`<=>` \(\left[ \begin{array}{l}x>2\\x<-2\end{array} \right.\)
`b)x^2<9`
`<=>\sqrtx^2<sqrt9`
`<=>|x|<3`
`<=>-3<x<3`
`c)(x-1)^2>=4`
`<=>\sqrt{(x-1)^2}>=sqrt4`
`<=>|x-1|>=2`
`<=>` \(\left[ \begin{array}{l}x-1 \ge 2\\x-1 \le -2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x \ge 3\\x \le -1\end{array} \right.\)
`d)(1-2x)^2<=0,09`
`<=>\sqrt{(1-2x)^2}<=sqrt{0,09}`
`<=>|2x-1|<=0,3`
`<=>-0,3<=2x-1<=0,3`
`<=>0,7<=2x<=1,3`
`<=>0,35<=x<=0,65`
`e)x^2+6x-7>0`
`<=>x^2-x+7x-7>0`
`<=>x(x-1)+7(x-1)>0`
`<=>(x-1)(x+7)>0`
TH1:
\(\left[ \begin{array}{l}x-1>0\\x+7>0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x>1\\x>-7\end{array} \right.\)
`<=>x>1`
TH2"
\(\left[ \begin{array}{l}x-1<0\\x+7<0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x<1\\x<-7\end{array} \right.\)
`<=>x<-7`
`f)x^2-x<2`
`<=>x^2-x-2<0`
`<=>x^2-2x+x-2<0`
`<=>x(x-2)+x-2<0`
`<=>(x-2)(x+1)<0`
`<=>` \(\begin{cases}x-2<0\\x+1>0\\\end{cases}\)
`<=>` \(\begin{cases}x<2\\x>-1\\\end{cases}\)
`<=>-1<x<2`
a) x2 > 4
<=> \(\left[{}\begin{matrix}x>2\\x< -2\end{matrix}\right.\)
b) \(x^2< 9\)
<=> \(-3< x< 3\)
c) \(\left(x-1\right)^2\ge4\)
<=> \(\left[{}\begin{matrix}x-1\ge2< =>x\ge3\\x-1\le-2< =>x\le-1\end{matrix}\right.\)
d) \(\left(1-2x\right)^2\le0,09\)
<=> \(-0,3\le1-2x\le0,3\)
<=> \(1,3\ge2x\ge0,7\)
<=> \(0,65\ge x\ge0,35\)
e) \(x^2+6x-7>0\)
<=> \(\left(x+7\right)\left(x-1\right)>0\)
<=> \(\left[{}\begin{matrix}x-1>0< =>x>1\\x+7< 0< =>x< -7\end{matrix}\right.\)
f) \(x^2-x< 2\)
<=> \(x^2-x-2< 0\)
<=> \(\left(x-2\right)\left(x+1\right)< 0\)
<=> \(\left\{{}\begin{matrix}x+1>0< =>x>-1\\x-2< 0< =>x< 2\end{matrix}\right.\)
<=> -1 < x < 2
g) \(4x^2-12x\le\dfrac{-135}{16}\)
<=> \(64x^2-192x+135\le0\)
<=> (8x - 15)(8x - 9) \(\le0\)
<=> \(\left\{{}\begin{matrix}8x-15\le0< =>x\le\dfrac{15}{8}\\8x-9\ge0< =>x\ge\dfrac{9}{8}\end{matrix}\right.\)
<=> \(\dfrac{9}{8}\le x\le\dfrac{15}{8}\)
a) \(\left(x-2\right)^2=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2-4x+4-x^2+16=0\)
\(\Leftrightarrow20-4x=0\)
\(\Leftrightarrow4x=20\)
\(\Leftrightarrow x=5\)
Vậy S = {5}
b) ĐKXĐ: \(x\ne0;x\ne-2\)
\(\dfrac{x+2}{x}=\dfrac{\left(x+1\right)\left(x+4\right)}{x^2+2x}+\dfrac{x}{x+2}\)
\(\Leftrightarrow\dfrac{x+2}{x}=\dfrac{x^2+4x+x+4+x^2}{x\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2}{x}=\dfrac{2x^2+5x+4}{x\left(x+2\right)}\)
\(\Rightarrow x\left(x+2\right)^2=x\left(2x^2+5x+4\right)\)
\(\Leftrightarrow x^3+4x^2+4x=2x^3+5x^2+4x\)
\(\Leftrightarrow x^3+x^2=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(TM\right)\end{matrix}\right.\)
Vậy S = {-1}
c) Câu này mình không chắc về đề lắm! Bạn dùng ô chữ M bị ngược để viết lại đề nhé!
a) Ta có: \(\left(x-2\right)^2=\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow x^2-4x+4=x^2-16\)
\(\Leftrightarrow x^2-4x+4-x^2+16=0\)
\(\Leftrightarrow-4x+20=0\)
\(\Leftrightarrow-4x=-20\)
hay x=5
Vậy: S={5}
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn