Bài 5. Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Qua A kẻ hai tiếp
tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm). Một đường thẳng d đi qua A
cắt đường tròn (O;R) tại B và C (AB < AC). Gọi I là trung điểm của BC
a) Chứng minh năm điểm A,M, N, O,I cùng thuộc một đường tròn
b) Chứng minh AM2 = AB.AC
c) Đường thẳng qua B, song song với AM cắt MN tại E. Chứng minh: IE // MC
d) Chứng minh: Khi d thay đổi quay quanh điểm A thì trọng tâm G của tam giác
MBC luôn nằm trên một đường tròn cố định.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
17 tháng 12 2023
a: Xét (O) có
AH,AK là các tiếp tuyến
Do đó: AH=AK
=>A nằm trên đường trung trực của HK(1)
Ta có: OH=OK
=>O nằm trên đường trung trực của HK(2)
Từ (1) và (2) suy ra AO là đường trung trực của HK
=>AO\(\perp\)HK
b: Xét (O) có
ΔDHK nội tiếp
DK là đường kính
Do đó: ΔDHK vuông tại H
=>DH\(\perp\)HK
mà HK\(\perp\)OA
nên OA//HD
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt