K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2020

Bài 1:

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2+2-\sqrt[3]{3x+5}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt{x+3}+2}-\frac{3\left(x-1\right)}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt{x+3}+2}-\frac{3}{4+2\sqrt[3]{3x+5}+\sqrt[3]{\left(3x+5\right)^2}}\right)=0\)

\(f\left(1\right)=a+1\)

Để hàm số liên tục trên \([-3;+\infty)\Leftrightarrow\) hàm số liên tục tại \(x=1\)

\(\Leftrightarrow\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow a+1=0\Rightarrow a=-1\)

Bài 2:

Các hàm số đã cho đều liên tục trên R nên liên tục trên từng khoảng bất kì

a/ Xét \(f\left(x\right)=m\left(x-1\right)^3\left(x+2\right)+2x+3\)

\(f\left(-2\right)=-1\) ; \(f\left(1\right)=5\)

\(\Rightarrow f\left(-2\right).f\left(1\right)< 0;\forall m\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-2;1\right)\) với mọi m

b/ \(m\left(sin^3x-cosx\right)=0\)

Nếu \(m=0\) pt có vô số nghiệm (thỏa mãn)

Nếu \(m\ne0\Leftrightarrow f\left(x\right)=sin^3x-cosx=0\)

\(f\left(0\right)=-1\) ; \(f\left(\frac{\pi}{2}\right)=1\)

\(\Rightarrow f\left(0\right).f\left(\frac{\pi}{2}\right)< 0\)

\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\frac{\pi}{2}\right)\)

Phương trình luôn có nghiệm với mọi m

7 tháng 10 2017

Hàm số liên tục trên R trước hết hàm số liên tục tại x=1

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

- Vậy không tồn tại a để hàm số liên tục trên R. 

7 tháng 3 2021

Mình nghĩ là tìm khẳng định sai chứ, vì b,c,d đều đúng

7 tháng 3 2021

\(DKXD:x\ne\sqrt[3]{4}\approx1,58\in\left(-2;2\right)\)

Vậy thì hàm sẽ gián đoạn trên khoảng \(\left(-2;2\right)\) => đáp án A sai, còn lại tất cả đều đúng

21 tháng 8 2017

2 tháng 1 2020

Chọn D.

Ta có (I) đúng vì f(x) = x5 – x2 + 1 là hàm đa thức nên liên tục trên R..

Ta có (III) đúng vì  liên tục trên (2; +∞)  nên hàm số liên tục trên [2; +∞)

(!!) sai vì hàm số gián đoạn tại các điểm hàm số không xác định.

10 tháng 5 2019

Đáp án C

23 tháng 2 2017

8 tháng 1 2017

Chọn C.

TXĐ: D = [0; +∞).

Với x = 0  ta có f(0) = m.

Ta có .

Vậy để hàm số liên tục trên [0; +∞) khi .

25 tháng 1 2017

Chọn B.

Ta có (II) đúng vì hàm số lượng giác liên tục trên từng khoảng của tập xác định.

Ta có (III) đúng vì 

Khi đó 

Vậy hàm số   liên tục tại x = 1.