K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x=3y=>y=\frac{2}{3}x\)

\(=>x^3+\frac{3.4}{9}x^2=84\Leftrightarrow x^3+\frac{4}{3}x^2=84\)

đặt \(x=t-\frac{4}{9}\)

\(PT\Leftrightarrow\left(t-\frac{4}{9}\right)^3+\frac{4}{3}\left(t-\frac{4}{9}\right)^2=84\)

\(\Leftrightarrow t^3-\frac{16}{27}t-\frac{61108}{729}=0\left(1\right)\)

gọi b,a là 2 số thỏa mãn

\(\hept{\begin{cases}a^3+b^3=-\frac{61108}{729}\\3ab=\frac{16}{27}\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3=-\frac{61108}{729}\\a^3b^3=\frac{4096}{531441}\end{cases}}}\)

=> \(a^3,b^3\)là nghiệm của phương trình

\(c^2+\frac{61108}{729}c+\frac{4096}{531441}=0\)

\(\Delta'c=\left(\frac{30554}{729}\right)^2-\frac{4096}{531441}=m\)

\(\Leftrightarrow\hept{\begin{cases}b^3=-\frac{30554}{729}+\sqrt{m}\\c^3=-\frac{30554}{729}-\sqrt{m}\end{cases}}\)

zới b,c thỏa mãn đều kiện trên

\(\left(1\right)\Leftrightarrow t^3+b^3+c^3-3bct=0\Leftrightarrow\left(t+b+c\right)\left[\left(t-b\right)^2+\left(t-c\right)^2\left(b-c\right)^2\right]=0\)

\(=>t=-b-c\Leftrightarrow x=-b-c-\frac{4}{9}\)

               \(=\sqrt[3]{\frac{30554}{729}-\sqrt{\left(\frac{30554}{729}\right)^2-\frac{4096}{531441}}}+\sqrt[3]{\frac{30554}{729}+\sqrt{\left(\frac{30554}{729}\right)^2-\frac{4096}{531441}}}-\frac{4}{9}\)

chắc thế đó

3 tháng 4 2020

cảm ơn bn nhiều nha

!!!!!!!!!!!!!

25 tháng 6 2015

a) \(aaaa:x=a\Rightarrow aaaa:a=x\Rightarrow x=1111\)

b) \(x\times a=a0a0a0\Rightarrow x=a0a0a0:a\Rightarrow x=101010\)

25 tháng 2 2020

giup minh voikhocroi

7 tháng 9 2016

Để M có giá trị nguyên thì x - 2 chia hết cho x + 3

=> (x + 3) - 5 chia hét cho x + 3

=> 5 chia hết cho x + 3

=> x + 3 thuộc Ư(5) = {-1;1;-5;5}

Ta có:

x + 3-5-115
x-8-4-22