2 cho tam giác ABC cân tại A có 2 đường cao AHvàBI cắt nhau tại Ovaf AB=5cm ,BC=6cm tia BI cắt đường phân giác ngoài của góc A tại M .
a tính AH? b chứng tỏ AM2=OM.IM
c tam giác MAB đồng dạng tam giác AOB d IA.MB=5.IM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABH\) có \(BI\) là phân giác \(\widehat{ABH}\), áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{IH}{IA}=\frac{BH}{AB}\)
\(\Rightarrow\)\(IH.AB=IA.BH\)
b) Xét 2 tam giác vuông: \(\Delta BHA\) và \(\Delta BAC\) có:
\(\widehat{B}\) CHUNG
\(\widehat{AHB}=\widehat{CAB}\)
suy ra: \(\Delta BHA\)\(~\)\(\Delta BAC\)
\(\Rightarrow\)\(\frac{BH}{AB}=\frac{BA}{BC}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) hình như đề sai, bn ktra lại nhé
d) Ta có: \(\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}\left(=90^0\right)\)
mà \(\widehat{ABE}=\widehat{IBH}\)
\(\Rightarrow\)\(\widehat{BEA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AIE}\) (đối đỉnh)
\(\Rightarrow\)\(\widehat{AIE}=\widehat{AEI}\)
\(\Rightarrow\)\(\Delta AIE\) cân
Mình bổ sung câu c nhé ^^
Ta có:\(\frac{IH}{IA}=\frac{BH}{AB}\left(1\right)\)
\(\frac{AE}{CE}=\frac{AB}{BC}\left(\text{BE là đường phân giác góc B}\right)\left(2\right)\)
\(\frac{BH}{AB}=\frac{AB}{BC}\left(\text{\Delta BHA ~\Delta BAC}\right)\left(3\right)\)
Từ (2) và (3) suy ra:
\(\frac{AE}{CE}=\frac{BH}{AB}\left(4\right)\)
Từ (1) và (4) suy ra:
\(\frac{IH}{IA}=\frac{AE}{EC}\)
Chúc bạn học tốt ^^
a)Xét △ABC vuông tại A (gt)
=> BC2 = AB2 + AC2 (định lý Pytago)
BC2 = 52 + 122 = 25 + 144 = 169
=> BC = \(\sqrt{169}\) = 13 cm
Xét △ABC có BF là tia phân giác của góc ABC (gt)
=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)
=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)
=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm
b)Xét △ABF và △HBE có:
góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)
góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABF ∼ △HBE (g.g)
c) Vì △ABF ∼ △HBE (câu b)
=> góc BFA bằng góc BEH
mà góc AEF bằng góc BEH (2 góc đối đỉnh)
=> góc BFA bằng góc AEF
=> △AEF cân tại A
d)Xét △ABC và △AHB có:
góc ABC chung
góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)
=> △ABC ∼ △HBA (g.g)
=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)
Xét △ABH có BE là tia phân giác của góc ABC (gt)
=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)
Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)
=> AB.AE=BC.HE(chắc vậy?)