Tìm x, y biết
\(8.|x-2017|=25-y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y<=5
y phải lẻ
với y=5=> x=2017
với y=3=> 16=8.(x-1017)^2 loại k có x nguyen
y=5; x=2017 duy nhất......
sua lai bai cua minh
Neu \(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay \(25=8\left(x-2017\right)^2+y^2\\ =>25=8+y^2\\ =>y^2=17\left(loai\right)\)(do x;y \(\in N\))
Vay \(x=2017;y=5\)
Ta co
\(25-y^2=8\left(x-2017\right)^2\\ =>25=8\left(x-2017\right)^2+y^2\)
Do
\(8\left(x-2017\right)^2\le25\\ =>\left(x-2017\right)^2\le\frac{25}{8}\)
\(=>\left(x-2017\right)^2\in\left\{0;1\right\}\)
Neu
\(\left(x-2017\right)^2=0\\ x-2017=0\\ x=2017\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=y^2\\ =>y=5\)
Neu
\(\left(x-2017\right)^2=1\\ =>x-2017=1\\ =>x=2018\)
Vay:
\(25=8\left(x-2017\right)^2+y^2\\ =>25=1+y^2\\ =>y^2=24\)(loai do x;y \(\in N\))
Vay x=2017 ; y=5
Do 25 - y^2 lớn hơn hoăc bằng 0 nên y bé hơn hoăc bằng 5
- Với y =5 suy ra 8(x - 2017)^2 = 0 suy ra x- 2017=0 nên x =2017
- Với y =4 suy ra 8(x-2017)^2 =9 ( loại )
-Với y =3 suy ra 8(x-2017)^2 =16 suy ra (x-2017)^2 =2 (loại)
-Với y=2 suy ra 8(x-2017)^2 =21 ( loại)
-Với y=1 suy ra 8(x-2017)^2 =24 suy ra (x -2017) ^2 =3 ( loại)
-Với y=0 suy ra 8(x-2017)^2 =25. (loại)
Vậy (x;y) = (2017;5)
Lời giải:
Ta thấy $25-y^2=8(x-2017)^2\geq 0$
$\Rightarrow 25\geq y^2$
$\Rightarrow 5\geq y$ (1)
Mặt khác: $25-y^2=8(x-2017)^2$ là số chẵn, do đó $y^2$ lẻ, kéo theo $y$ lẻ (2)
Từ $(1);(2)$ suy ra $y$ có thể nhận giá trị $y=1; 3;5$
Với $y=1$ thì $8(x-2017)^2=25-1^2=24$
$\Rightarrow (x-2017)^2=3$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=3$ thì $8(x-2017)^2=25-3^2=16$
$\Rightarrow (x-2017)^2=2$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=5$ thì $8(x-2017)^2=25-y^2=0$
$\Rightarrow (x-2017)^2=0\Rightarrow x=2017$
Vậy $(x,y)=(2017, 5)$
a) 2y+1.3x=12y=3y.22y
<=> 2y+1.3x=3y.22y <=> 3x-y=22y-y-1 <=> 3x-y=2y-1
Nếu x-y và y-1 khác 0 thì 2 vế 1 số là lẻ, 1 số là chẵn => ko có giá trị nào.
=> x-y=y-1=0 => x=y=1
Không tìm được đâu nhá
Vì muốn tìm 2 ẩn
Phải có hai pt
Hoc tot