K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

x = 3 là nghiệm của phương trình, ta có:

3^3 - 3^2 - 9.3 - 9m = 0

<=> 27 - 9 - 27 - 9m = 0

<=> -9 - 9m = 0

<=> -9m = 0 + 9

<=> -9m = 9

<=> m = -1

11 tháng 1 2023

`B4:`

`a)` Thay `x=3` vào ptr:

  `3^3-3^2-9.3-9m=0<=>m=-1`

`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`

        `<=>x^2(x-1)-9(x-1)=0`

        `<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`

`B5:`

`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`

    `<=>-8+2m^2-2m+14-3m^2+3m+6=0`

   `<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`

`b)`

`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`

      `<=>x^3-19x-30=0`

      `<=>x^3-5x^2+5x^2-25x+6x-30=0`

      `<=>(x-5)(x^2+5x+6)=0`

      `<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`

`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`

   `<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`

29 tháng 8 2018

Để phương trình có một trong các nghiệm là x=2 nên 

Thay x=2 vào phương trình, ta được:

\(\left(m+2\right)^2-\left(2-3m\right)^2=0\)

\(\Leftrightarrow\left(m+2+2-3m\right)\left(m+2-2+3m\right)=0\)

\(\Leftrightarrow4m\cdot\left(-2m+4\right)=0\)

mà 4>0

nên m(-2m+4)=0

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\-2m=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)

Vậy: Để phương trình có 1 trong các nghiệm là x=2 thì \(m\in\left\{0;2\right\}\)

24 tháng 2 2021

`x=2` là nghiệm phương trình nên thay x=2 vào ta có:

`(2+m)^2-(2-3m)^2=0`

`=>(2+m-2+3m)(2+m+2-3m)=0`

`=>4m(4-2m)=0`

`=>m(2-m)=0`

`=>` \left[ \begin{array}{l}m=0\\m=1\end{array} \right.

THAY X=4+\(\sqrt{2017}\)VÀO PHƯƠNG TRÌNH=>PT CÓ DẠNG ;GÌ ĐÓ GÌ ĐÓ VIẾT RA NHEN<lười chảy nước>

cho pt cộng với chất xúc tác cho ló pư nhanh(hehe)....=\(2025+6\sqrt{2017}-6m-2m\sqrt{2017}=0\)

=>\(0m^2-\left(6+2\sqrt{2017}\right)m+2025+6\sqrt{2017}=0\)rùi tự giải đenta nha, mệt mỏi qué rùi tui coằn ik ngủ mai kiểm tra, nếu rảnh mai tui qua cho kết quả nha sỏ ry nhìu

chắc qua bùn ngủ qué ko giải đenta nha^,^

m=\(\frac{2025+6\sqrt{2017}}{6+2\sqrt{2017}}\)

17 tháng 1 2018

Đáp án đúng : C

a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

Thịnh ơi, vì sao mình không dùng x1x2 để tìm m

14 tháng 10 2019

ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)

\(\Delta=4m^2-8m+9\)

\(\Delta=\left(2m-2\right)^2+5>0\)

do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2

áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)

theo bài ra:   x13  +  x23 = 27 

<=> (x1 + x2 )3 - 3x1x2  (x1+x2)  - 27=0   <=>  (2m-1)3 - 3(m-2) ( 2m-1) -27 =0

<=>  8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0

<=> 8m3 - 18m2 + 21m - 34 =0 <=>  (m-2)(8m2 -2m+17) = 0 

\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2

Vậy m=2 thỏa mãn đề bài

( chú giải: PTVN là phương trình vô nghiệm)