\(x^2-\left(2m-1\right)x+m-2=0\)( m là tham số, x là ẩn số)

Tìm tấ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)

\(\Delta=4m^2-8m+9\)

\(\Delta=\left(2m-2\right)^2+5>0\)

do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2

áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)

theo bài ra:   x13  +  x23 = 27 

<=> (x1 + x2 )3 - 3x1x2  (x1+x2)  - 27=0   <=>  (2m-1)3 - 3(m-2) ( 2m-1) -27 =0

<=>  8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0

<=> 8m3 - 18m2 + 21m - 34 =0 <=>  (m-2)(8m2 -2m+17) = 0 

\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2

Vậy m=2 thỏa mãn đề bài

( chú giải: PTVN là phương trình vô nghiệm)

NV
14 tháng 10 2019

\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=4\left(m-1\right)^2+5>0\) \(\forall m\)

Phương trình đã cho luôn có 2 nghiệm phân biệt

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\)

\(x_1^3+x_2^3=27\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=27\)

\(\Leftrightarrow\left(2m-1\right)^3-3\left(m-2\right)\left(2m-1\right)-27=0\)

\(\Leftrightarrow8m^3-18m^2+21m-34=0\)

\(\Leftrightarrow\left(m-2\right)\left(8m^2-2m+17\right)=0\)

\(\Rightarrow m=2\)

15 tháng 10 2019

mơn đại ca~~~~~~~~~~yeu

23 tháng 6 2017

denta , =(m -1) -(m +1 )

=\(m^2-2m+1-m-1=m^2-3m\)

phương trình có hai nghiệm phân biệt 

\(\Leftrightarrow denta>0.\)

\(\Leftrightarrow m^2-3m>0\)

\(\Leftrightarrow m\left(m-3\right)>0\)

\(\Leftrightarrow m>3ho\text{ặ}cm< 0\)

23 tháng 6 2017

m > - 1/3

Δ=(2m-1)^2-4(2m-2)

=4m^2-4m+1-8m+8=(2m-3)^2

Để pt có 2 nghiệm pb thì 2m-3<>0

=>m<>3/2

x1^4+x2^4=17

=>(x1^2+x2^2)^2-2(x1x2)^2=17

=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17

=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17

=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17

Đặt 4m^2-8m+4=a

Ta sẽ có (a+1)^2-2a-17=0

=>a^2-16=0

=>a=4 hoặc a=-4(loại)

=>4m^2-8m=0

=>m=0 hoặc m=2

20 tháng 5 2019

\(2x^2+2\left(2m-6\right)x-6m+52=0\)

\(\Delta=4\left(2m-6\right)^2+2.\left(6m-52\right)=4.\left(4m^2-2m+36\right)+12m-104=16m^2-8m+144+12m-104=16m^2+4m+40>0\)

Vậy pt luôn có nghiệm hữu tỉ

15 tháng 3 2017

a = 1 , b = - ( 2m + 1 ) , c = m - 3

\(\Delta=b^2-4ac\)

     \(=\left[-\left(2m+1\right)\right]^2-4.1.\left(m-3\right)\)

      \(=4m^2+4m+1-4m+12\)

        \(=4m^2+13>0\forall m\)

Vậy: Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=m-3\)

   \(A=3x_1x_2-2x_1x_2\ge4\)

 \(A=3P-2P\ge4\)

 \(A=P=m-3\ge4\Leftrightarrow m\ge7\)