cho x>0,y>0 và x+y<=1 chứng minh:1/(x2+xy)+1/(y2+xy)>= 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Áp dụng BĐT AM-GM,ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4\left(x+y\right)}{x+y}\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\) ( đfcm )
Có: \(\left(x+y\right)\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge4\)⇔\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)⇔\(\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
⇔\(\dfrac{\left(x+y\right)\left(x+y\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{xy\left(x+y\right)}\)⇔\(\left(x+y\right)^2\ge4xy\)⇔\(x^2+2xy+y^2\ge4xy\)
⇔\(x^2-4xy+2xy+y^2\ge0\)⇔\(x^2-2xy+y^2\ge0\)⇔\(\left(x-y\right)^2\ge0\) luôn đúng
Áp dụng BĐT cosi cho \(x,y>0\)
\(M=x+y+\dfrac{1}{x}+\dfrac{1}{y}\ge2\sqrt{x\cdot\dfrac{1}{x}}+2\sqrt{y\cdot\dfrac{1}{y}}=4\)
Dấu \("="\Leftrightarrow x=y=1\)
Mà \(x+y=2\le\dfrac{4}{3}\left(vô.lí\right)\) nên dấu \("="\) không xảy ra
Vậy M không có GTNN
a) \(\left(x-y\right)^2=x^2-2xy+y^2=x^2+y^2-2xy\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy=7^2+2.60\)
\(\Rightarrow x^2+y^2=169\)
\(\left(x+y\right)^2=x^2+y^2+2xy=169+2.60\)
\(\Rightarrow\left(x+y\right)^2=289=17^2\)
\(\Rightarrow x+y=17\)
\(x^2-y^2=\left(x+y\right)\left(x-y\right)=17.7=119\)
b) \(\left(x^2+y^2\right)^2=\left(x^2\right)^2+\left(y^2\right)^2+2x^2y^2=x^4+y^4+2\left(xy\right)^2\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=169^2-2.60^2\)
\(\Rightarrow x^4+y^4=28561-7200=21361\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$