K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

(-1; +\infty )(−1;+∞)

(-\infty ; -2)(−∞;−2)

(-2; +\infty )(−2;+∞)

(-2; -1 )(−2;−1)

15 tháng 5 2017

Chọn C

Ta có 

Đặt  bpt trở thành 

Bảng xét dấu

Căn cứ bảng xét dấu ta được 

15 tháng 9 2017

17 tháng 12 2018


25 tháng 3 2018

23 tháng 12 2019




30 tháng 7 2017


NV
20 tháng 3 2022

\(\left|2x-5\right|-3\le0\)

\(\Leftrightarrow\left|2x-5\right|\le3\)

\(\Leftrightarrow-3\le2x-5\le3\)

\(\Leftrightarrow1\le x\le4\)

20 tháng 3 2022

dạ em cảm ơn

NV
21 tháng 3 2022

\(\left|2x-5\right|-3\le0\)

\(\Leftrightarrow\left|2x-5\right|\le3\)

\(\Leftrightarrow-3\le2x-5\le3\)

\(\Leftrightarrow1\le x\le4\)

\(\Rightarrow x\in\left[1;4\right]\) (và các tập con của nó)

21 tháng 3 2022

Tập hợp cần tìm là tập hợp con của (-\(\infty\);4].

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta thấy trên \(\left( { - \infty ; - 2} \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - \infty ; - 2} \right)\)

Trên \(\left( { - 2; - 1} \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 < 0\)\(\forall x \in \left( { - 2; - 1} \right)\)

Trên \(\left( { - 1; + \infty } \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - 1; + \infty } \right)\)

b)

Trên \(\left( { - \infty ;1} \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( { - \infty ;1} \right)\)

Trên \(\left( {1;3} \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 > 0\)\(\forall x \in \left( {1;3} \right)\)

Trên \(\left( {3; + \infty } \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( {3; + \infty } \right)\)

c) Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) cùng dấu vưới hệ số a với mọi x thuộc các khoảng \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\); \(f\left( x \right)\) trái dấu với hệ số a với mọi x thuộc khoảng \(\left( {{x_1};{x_2}} \right)\), trong đó \({x_1},{x_2}\) là hai nghiệm của \(f\left( x \right)\) và \({x_1} < {x_2}\).