K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

\(2\equiv-1\left(mod3\right)\Rightarrow2^{2^n}\equiv1\left(mod3\right)\)

\(4\equiv1\left(mod3\right)\Rightarrow4^n\equiv1\left(mod3\right)\)

\(16\equiv1\left(mod3\right)\)

\(\Rightarrow a=2^{2^n}+4^n+16\equiv1+1+1\equiv0\left(mod3\right)\)

Vậy \(a⋮3,\forall n\inℤ^+\)

13 tháng 6 2021

Sai nha phải xét n=0 chứ tại 2^n với n =0 thì lẻ mà