K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

\(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)

...

8 tháng 12 2017

Sửa lại \(\left(12x+7\right)^2.\left(3x+2\right).\left(2x+1\right)=3\)

\(\Leftrightarrow\left(12x+7\right)^2.4\left(3x+2\right).6\left(2x+1\right)=72\)

\(\Leftrightarrow\left(12x+7\right)^2.\left(12x+8\right).\left(12x+6\right)=72\)

Đặt \(12x+7=y\) , thế vào phương trình trên ta có:

\(y^2.\left(y+1\right).\left(y-1\right)=72\)\(\Leftrightarrow y^4-y^2=72\)

\(\Leftrightarrow\left(y^2-9\right)\left(y^2+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y^2-9=0\\y^2+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\pm3\\y^2=-8\end{matrix}\right.\Leftrightarrow y=\pm3\)\(y^2\ge0\)

Nếu \(y=3\Leftrightarrow12x+7=3\Leftrightarrow x=-\dfrac{1}{3}\)

Nếu \(y=-3\Leftrightarrow12x+7=-3\Leftrightarrow x=-\dfrac{5}{6}\)

19 tháng 2 2021

a)(3x-1)(4x-8)=0

⇔3x-1=0 hoặc 4x-8=0

1.3x-1=0⇔3x=1⇔x=1/3

2.4x-8=0⇔4x=8⇔x=2

phương trình có 2 nghiệm:x=1/3 và x=2

b)(x-2)(1-3x)=0

⇔x-2=0 hoặc 1-3x=0

1.x-2=0⇔x=2

2.1-3x=0⇔-3x=1⇔x=-1/3

phương trình có 2 nghiệm:x=2 và x=-1/3

c)(x-3)(x+4)-(x-3)(2x-1)=0

⇔(x+4)(2x-1)=0

⇔x+4=0 hoặc 2x-1=0

1.x+4=0⇔x=-4

2.2x-1=0⇔2x=1⇔x=1/2

phương trình có hai nghiệm:x=-4 và x=1/2

d)(x+1)(x+2)=2x(x+2)

⇔(x+1)(x+2)-2x(x+2)=0

⇔2x(x+1)=0

⇔2x=0 hoặc x+1=0

1.2x=0⇔x=0

2.x+1=0⇔x=-1

phương trình có 2 nghiệm:x=0 và x=-1

 

11 tháng 2 2016

bài 1 :

\(\Rightarrow x=-\frac{1}{4}\) hoặc \(x=\frac{1}{2}\)

bài 2 :

\(\Leftrightarrow\left(2x+1\right)\left(3x+2\right)\left(12x+7\right)^2-3=\left(3x+1\right)\left(6x+5\right)\left(48x^2+56x+19\right)\)

\(\Rightarrow3x+1=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow6x+5=0\)

\(\Rightarrow6x=-5\)

Áp dụng Delta ta có :

\(\Rightarrow48x^2+56x+19=0\)

\(\Rightarrow56^2-4\left(48.19\right)=-512\)

=>D<0 ko có nghiệm thực ( ko có hình tam giác nên thay tạm )

\(\Rightarrow x=-\frac{5}{6}\) hoặc \(x=-\frac{1}{3}\)

tôi nhớ có 1 lần tôi làm mà ông ko tik nhé

12 tháng 2 2016

a/ 2x(8x - 1)2(4x - 1) = 9

=> (64x2 - 16x + 1) (8x2 - 2x) = 9

- Nhân 2 vế cho 8 ta đc:

   (64x2 - 16x + 1) (64x2 - 16x) = 72

- Đặt a = 64x2 - 16x  ta đc:

   (a + 1).a = 72

   => a2 + a - 72 = 0 

   => (a - 8)(a + 9) = 0

   => a = 8 hoặc a = -9

- Với a = 8 => 64x2 - 16x = 8 => 64x2 - 16x - 8 = 0 => (2x - 1)(4x + 1) = 0 => x = 1/2 hoặc x = -1/4

- Với a = -9 => 64x2 - 16x = -9 => 64x2 - 16x + 9 = 0 , mà 64x2 - 16x + 9 > 0 => pt vô nghiệm

Vậy x = 1/2 , x = -1/4

23 tháng 7 2018

liên hợ thôi !

31 tháng 3 2015

Đặt a = x2 + 3x - 4 ; b = 2x2 - 5x + 3 

=> 3x2 - 2x - 1 = a + b

khi đó phương trình đã cho có dạng: a3 + b3 = (a+ b)3

=> a3 + b3 = a3 + b3 + 3ab(a + b) => 3ab (a+b) = 0 => a= 0 hoặc b = 0 hoặc a = -b

Nếu a = 0 =>  x2 + 3x - 4  = 0 =>  x2 + 4x- x - 4 =  0 => (x - 1)(x + 4) = 0 => x = 1; -4

Nếu b = 0 =>  2x2 - 5x + 3 = 0 => 2x2 - 2x - 3x + 3 = 0 => (2x-3)(x - 1) = 0 => x = 3/2; 1

Nếu a = - b =>  - (2x2 - 5x + 3) =  x2 + 3x - 4 => 3x2 - 2x - 1 = 0 => 3x2 - 3x + x - 1  = 0 => (3x + 1)(x - 1) = 0 => x = -1/3; 1

Vậy x = 1; 3/2; -1/3; -4

31 tháng 8 2018


Pt ⇔4x2+x+3+4xx+3−−−−√+2x−1+1−22x−1−−−−−√=0⇔(2x−x+3−−−−√)2−√−1)2=0⇔x=1⇔4x2+x+3+4xx+3+2x−1+1−22x−1=0⇔(2x−x+3)2+(2x−1−1)2=0⇔x=1

9 tháng 1 2019

2( x - 1 ) - 5 = 3( 5 - 3x)

2x - 2 - 5 = 15 - 9x

2x - 7 = 15 - 9x

2x + 9x = 15 + 7

11x = 22

x = 2

Vậy x = 2 

10 tháng 1 2019

\(2\left(x-1\right)-5=3\left(5-3x\right)\)

\(\Leftrightarrow2x-2-5=15-9x\)

\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)

\(\Leftrightarrow2x-7=15-9x\)

\(\Leftrightarrow2x+9x=15+7\)

\(\Leftrightarrow11x=22\)

\(\Leftrightarrow x=22\div11\)

\(\Leftrightarrow x=2\)

\(\text{Vậy }x=2\)