K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

1, Ta có: \(x^2-y^2=1998\Leftrightarrow\left(x-y\right)\left(x+y\right)=1998⋮2\Rightarrow\left(x-y\right)\left(x+y\right)⋮2\)

mà \(\left(x-y\right)+\left(x+y\right)=2y⋮2\Rightarrow x-y,x+y\)cùng tính chẵn lẻ suy ra \(x-y,x+y\)cùng chẵn

\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\Rightarrow1998⋮4\)(vô lí) suy ra không tồn tại

2, gt => x,y khác tính chẵn lẻ. Giả sử x chẵn, y lẻ suy ra \(x=2k,y=2m+1\left(k,m\inℤ\right)\)

Khi đó: \(\left(2k\right)^2+\left(2m+1\right)^2=1999\Leftrightarrow4k^2+4m^2+4m+1=1999\Leftrightarrow1998=4\left(k^2+m^2+m\right)⋮4\)

\(\Rightarrow1998⋮4\)(vô lí) suy ra không tồn tại 

10 tháng 3 2020

Thanks bn iu!!!

1 tháng 8 2021

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

1 tháng 8 2021

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

6 tháng 5 2021

Có x^2020 lớn hơn hoặc bằng 0 với mọi x

x^2020+x^2021+2019 lớn hơn hoặc bằng 2019 với mọi x

=> x^2020+x^2021+2019>0 với mọi x

=>G(x) vô nghiệm

2 tháng 5 2016

Q(x)=x4+2015x2+2016

   có:   x4\(\ge\)0   với mọi x

          2015x\(\ge\)0    với mọi x

           2016>0

 => x4+2015x2+2016>0

Q(x) ko có nghiệm

2 tháng 5 2016

Ta có x^4 lớn hơn hoặc bằng 0 vs mọi x thuộc N 

2015x^2 lớn hơn hoặc bằng 0 vs mọi x thuộc N 

2016>0=)x^4+2015x^2+2016 >0

Vậy Q(x) hk có nghiệm 

 

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Lời giải:
Giả sử $P(x)$ có nghiệm $a$ nguyên. Khi đó:

$a^3-3a+5=0$

$\Leftrightarrow a(a^2-3)=-5$

Khi đó ta xét các TH sau:

TH1: $a=1; a^2-3=-5$

$\Leftrightarrow a=1$ và $a^2=2$ (vô lý)

TH2: $a=-1; a^2-3=5$

$\Leftrightarrow a=-1; a^2=8$ (vô lý)

TH3: $a=5; a^2-3=-1$

$\Leftrightarrow a=5$ và $a^2=2$ (vô lý)

TH4: $a=-5; a^2-3=1$

$\Leftrightarrow a=-5$ và $a^2=4$ (vô lý)

Vậy điều giả sử là sai, tức $P(x)$ không có nghiệm nguyên.

9 tháng 5 2016

Ta có: \(x^2+4x+5=x^2+2x+2x+4+1\)

                                    \(=\left(x^2+2x\right)+\left(2x+4\right)+1\)

                                    \(=x\left(x+2\right)+2\left(x+2\right)+1\)

                                    \(=\left(x+2\right)^2+1\) 

Vì \(\left(x+2\right)^2\ge0\) nên \(\left(x+2\right)^2+1\ge1\)

Vậy đa thức trên ko có nghiệm

Chúc bạn học tốt !!!

29 tháng 5 2016

Ta có: \(x^2-2x+2\) \(=x^2-2x+1+1\)

                                      \(=\left(x^2-2x+1\right)+1\)

                                        \(=\left(x-1\right)^2+1\)

Vì (x - 1)^2 \(\ge\) 0 nên (x - 1)^2 + 1 \(\ge\)1

Vậy đa thức trên ko có nghiệm

28 tháng 5 2016

Ta có: x2 - 2x + 2 = x2 - 2x + 1 + 1 = (x - 1)2 + 1 \(\ge\)

     Vậy pt vô nghiệm

7 tháng 8 2019

Chọn hai dãy số có số hạng tổng quát là Giải sách bài tập Toán 11 | Giải sbt Toán 11 và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tính và so sánh lim f ( a n ) và lim f ( b n ) để kết luận về giới hạn của f(x) khi x → 0

AH
Akai Haruma
Giáo viên
19 tháng 2 2023

Lời giải:

$2M(x)=2x^4+2x^3+4x^2+2=x^4+(x^4+2x^3+x^2)+3x^2+2$
$=x^4+(x^2+x)^2+3x^2+2\geq 2>0$ với mọi $x$

$\Rightarrow M(x)>0$ với mọi $x$ 

$\Rightarrow$ đa thức $M(x)$ vô nghiệm.