Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn:
\(\frac{x^{63}+x^{62}+...+x^2+x+1}{x^{31}+x^{30}+x^{29}+...+x^2+x+1}\)
hay \(\frac{1+x+x^2+...+x^{63}}{1+x+x^2+...+x^{31}}=\frac{x^{32}+x^{33}+x^{34}+...+x^{63}}{1}=x^{32}+x^{33}+x^{34}+...+x^{63}\)
\(\frac{x^{63}+x^{62}+...+x^2+x+1}{x^{31}+x^{30}+x^{29}+...+x^2+x+1}\)
hay \(\frac{1+x+x^2+...+x^{63}}{1+x+x^2+...+x^{31}}=\frac{x^{32}+x^{33}+x^{34}+...+x^{63}}{1}=x^{32}+x^{33}+x^{34}+...+x^{63}\)